4 research outputs found

    Multiorbital effects in the functional renormalization group: A weak-coupling study of the Emery model

    Full text link
    We perform an instability analysis of the Emery three-band model at hole doping and weak coupling within a channel-decomposed functional renormalization group flow proposed in Phys. Rev. B 79, 195125 (2009). In our approach, momentum dependences are taken into account with improved precision compared to previous studies of related models. Around a generic parameter set, we find a strong competition of antiferromagnetic and d-wave Cooper instabilities with a smooth behavior under a variation of doping and additional hopping parameters. For increasingly incommensurate ordering tendencies in the magnetic channel, the d-wave pairing gap is deformed at its maxima. Comparing our results for the Emery model to those obtained for the two-dimensional one-band Hubbard model with effective parameters, we find that, despite considerable qualitative agreement, multi-orbital effects have a significant impact on a quantitative level.Comment: revised version: 22 pages, 11 figure

    An alternative functional renormalization group approach to the single impurity Anderson model

    Full text link
    We present an alternative functional renormalization group (fRG) approach to the single-impurity Anderson model at finite temperatures. Starting with the exact self-energy and interaction vertex of a small system ('core') containing a correlated site, we switch on the hybridization with a non-interacting bath in the fRG-flow and calculate spectra of the correlated site. Different truncations of the RG-flow-equations and choices of the core are compared and discussed. Furthermore we calculate the linear conductance and the magnetic susceptibility as functions of temperature and interaction strength. The signatures of Kondo physics arising in the flow are compared with numerical renormalization group results.Comment: 16 page

    Effective low-energy Hamiltonians for interacting nanostructures

    Full text link
    We present a functional renormalization group (fRG) treatment of trigonal graphene nanodiscs and composites thereof, modeled by finite-size Hubbard-like Hamiltonians with honeycomb lattice structure. At half filling, the noninteracting spectrum of these structures contains a certain number of half-filled states at the Fermi level. For the case of trigonal nanodiscs, including interactions between these degenerate states was argued to lead to a large ground state spin with potential spintronics applications. Here we perform a systematic fRG flow where the excited single-particle states are integrated out with a decreasing energy cutoff, yielding a renormalized low-energy Hamiltonian for the zero-energy states that includes effects of the excited levels. The numerical implementation corroborates the results obtained with a simpler Hartree-Fock treatment of the interaction effects within the zero-energy states only. In particular, for trigonal nanodiscs the degeneracy of the one-particle-states with zero-energy turns out to be very robust against influences of the higher levels. As an explanation, we give a general argument that within this fRG scheme the zero-energy degeneracy remains unsplit under quite general conditions and for any size of the trigonal nanodisc. We furthermore discuss the differences in the effective Hamiltonian and their ground states of single nanodiscs and composite bow-tie-shaped systems.Comment: 13 page
    corecore