4 research outputs found

    Dose–Response Effect of Nitrogen on Microbial Community during Hydrocarbon Biodegradation in Simplified Model System

    No full text
    Knowledge about the influence of C:N ratio on the biodegradation process of hydrocarbon compounds is of significant importance in the development of biostimulation techniques. The purpose of this study was to assess the impact of nitrogen compounds on the environmental consortium during the process of biological decomposition of hydrocarbons. The experimental variants represented low, moderate, and excessive biostimulation with nitrogen compounds. The metabolic activity of the consortium was tested using the flow cytometry technique. The efficiency of the biodegradation of hydrocarbons of the consortium, based on the gas chromatography method, and metapopulation changes, based on the analysis of V4 16srRNA sequencing data, were assessed. The results of the research confirm the positive effect of properly optimized biostimulation with nitrogen compounds on the biological decomposition of polycyclic aromatic hydrocarbons. The negative impact of excessive biostimulation on the biodegradation efficiency and metabolic activity of microorganisms is also proven. Low resistance to changes in the supply of nitrogen compounds is demonstrated among the orders Xanthomonadales, Burkholderiales, Sphingomonadales, Flavobacteriales, and Sphingobacteriales. It is proven that quantitative analysis of the order of Rhizobiales, characterized by a high-predicted potential for the decomposition of polycyclic aromatic hydrocarbons, may be helpful during biostimulation optimization processes in areas with a high nitrogen deficiency

    Heavy Metals as a Factor Increasing the Functional Genetic Potential of Bacterial Community for Polycyclic Aromatic Hydrocarbon Biodegradation

    No full text
    The bioremediation of areas contaminated with hydrocarbon compounds and heavy metals is challenging due to the synergistic toxic effects of these contaminants. On the other hand, the phenomenon of the induction of microbial secretion of exopolysaccharides (EPS) under the influence of heavy metals may contribute to affect the interaction between hydrophobic hydrocarbons and microbial cells, thus increasing the bioavailability of hydrophobic organic pollutants. The purpose of this study was to analyze the impact of heavy metals on the changes in the metapopulation structure of an environmental consortium, with particular emphasis on the number of copies of orthologous genes involved in exopolysaccharide synthesis pathways and the biodegradation of hydrocarbons. The results of the experiment confirmed that the presence of heavy metals at concentrations of 50 mg·L−1 and 150 mg·L−1 resulted in a decrease in the metabolic activity of the microbial consortium and its biodiversity. Despite this, an increase in the biological degradation rate of polycyclic aromatic hydrocarbons was noted of 17.9% and 16.9%, respectively. An assessment of the estimated number of genes crucial for EPS synthesis and biodegradation of polycyclic aromatic hydrocarbons confirmed the relationship between the activation of EPS synthesis pathways and polyaromatic hydrocarbon biodegradation pathways. It was established that microorganisms that belong to the Burkholderiales order are characterized by a high representation of the analyzed orthologs and high application potential in areas contaminated with heavy metals and hydrocarbons
    corecore