3 research outputs found

    Czynniki wpływające na obniżenie hałasu przekładni zębatych

    No full text
    Wibroaktywność pojawiająca się w trakcie pracy przekładni zębatych ma wiele źródeł pochodzenia. Kształtowanie warunków akustycznych jest możliwe jeszcze na etapie projektowania i konstruowania. Dodatkowo wysokie wymagania ekonomiczne i eksploatacyjne zmuszają do poszukiwania innowacyjnych metod badawczych w zakresie technik symulacyjnych. Przyczyny parametrycznych drgań przekładni zębatych mają podłoże wewnętrzne i zewnętrzne, które są najczęściej wymuszane przez oddziaływania innych zespołów roboczych maszyn i trudne do wyeliminowania. Najważniejszymi czynnikami wpływającymi na poziom hałasu podczas pracy kół zębatych są: rodzaj przekładni, profil zęba, podziałka – moduł, kąt przyłożenia, faza wzębiania i wyzębiania wynikająca z położenia średnic tocznych na odcinku czynnym przyporu, zmiany profilu zęba, stopień pokrycia kół zębatych, luz międzyzębowy, obciążenie zęba, poziom jakości, wykończenie powierzchni (chropowatość), bicie i niewyważenie, przełożenie, rezonans, lepkość smaru oraz korpus przekładni

    Viscosity Approximation of PDMS Using Weibull Function

    No full text
    The viscosity of a fluid is one of its basic physico-chemical properties. The modelling of this property as a function of temperature has been the subject of intensive studies. The knowledge of how viscosity and temperature variation are related is particularly important for applications that use the intrinsic friction of fluids to dissipate energy, for example viscous torsional vibration dampers using high viscosity poly(dimethylsiloxane) as a damping factor. This article presents a new method for approximating the dynamic viscosity of poly(dimethylsiloxane). It is based on the three-parameter Weibull function that far better reflects the relationship between viscosity and temperature compared with the models used so far. Accurate mapping of dynamic viscosity is vitally important from the point of view of the construction of viscous dampers, as it allows for accurate estimation of their efficiency in the energy dissipation process

    Removal of Phosphorus with the Use of Marl and Travertine and Their Thermally Modified Forms—Factors Affecting the Sorption Capacity of Materials and the Kinetics of the Sorption Process

    No full text
    The paper presents new reactive materials, namely marl and travertine, and their thermal modifications and the Polonite® material, analyzing their phosphorus removal from water and wastewater by sorption. Based on the experimental data, an analysis of the factors influencing the sorption capacity of the materials, such as the material dose, pH of the initial solution, process temperature, surface structure, and morphology, was performed. Adsorption isotherms and maximum sorption capacities were determined with the use of the Langmuir, Freundlich, Langmuir–Freundlich, Tóth, Radke–Praunitz, and Marczewski–Jaroniec models. The kinetics of the phosphorus sorption process of the tested materials were described using reversible and irreversible pseudo-first order, pseudo-second order, and mixed models. The natural materials were the most sensitive to changes in the process conditions, such as temperature and pH. The thermal treatment process stabilizes the marl and travertine towards materials with a more homogeneous surface in terms of energy and structure. The fitted models of the adsorption isotherms and kinetic models allowed for an indication of a possible phosphorus-binding mechanism, as well as the maximum amount of this element that can be retained on the materials’ surface under given conditions—raw marl (43.89 mg P/g), raw travertine (140.48 mg P/g), heated marl (80.44 mg P/g), heated travertine (282.34 mg P/g), and Polonite® (54.33 mg P/g)
    corecore