3 research outputs found

    Determination of Organochlorines in Soil of a Suburban Area of SĂŁo Paulo Brazil

    No full text
    Technological advances have promoted improvements in several science fields, especially related to environmental and analytical areas with the improvement of detection and development of environmentally friendly extraction techniques. This study applied Quick, Easy, Cheap, Effective, Rugged and Safe method (QuEChERS) for soil extraction and assessed its performance through a validation study using samples from the soil of a contaminated area in Caieiras, SP, Brazil. Nine organochlorine pesticides, including the isomers alpha, beta, gamma and delta- hexachlorocyclohexane; cis- and trans-heptachlor epoxide; cis- and trans-chlordane and heptachlor were analyzed by gas chromatography coupled to electron capture detector. The method was validated according to ISO 5725-4 (2020), EURACHEM (2014) and DOQ-CGCRE-008 (2016). The limits of detection and quantification of the method for the nine organochlorines were α-HCH (1.2 and 12.6 µg kg−1), β-HCH (1.7 and 12.0 µg kg−1), γ-HCH (1.5 and 11.6 µg kg−1), δ-HCH (0.8 and 11.6 µg kg−1), heptachlor (1.0 and 10.8 µg kg−1), cis-heptachlor epoxide (0.9 and 11.5 µg kg−1), trans-heptachlor epoxide (0.9 and 11.5 µg kg−1), cis-chlordane (0.4 and 7.9 µg kg−1) and trans-chlordane (0.5 and 10.9 µg kg−1), respectively, and all of them were within the maximum limits recommended by the EPA for the compounds α-HCH (86.0 and 360.0 µg kg−1), β-HCH (300.0 and 1.3 × 103 µg kg−1), γ-HCH (570.0 and 2.5 × 103 µg kg−1), δ-HCH (not defined), heptachlor (130.0 and 630.0 µg kg−1), cis-/trans-heptachlor epoxide (7.0 and 330.0 µg kg−1), cis-/trans-chlordane (1.77 × 103 and 7.7 × 103 µg kg−1) in residential and industrial soil, respectively. Recovery results were between 65% and 105% for almost all compounds, which is an optimum result for multi-residue analytical methods, considering the complexity of the matrix used in the study. Caieiras presented contamination levels of α-HCH in the range of 2.0 to 66.0 µg g−1, which was higher than the limits established by EPA, corresponding to 0.077 µg g−1 for residential soil and 0.27 µg g−1 for industrial soil. According to the validation study, the analytical method proposed was reliable for organochlorine quantification, and the QuEChERS was considered efficient for organochlorine extraction from soil

    Mucoadhesive Polymers and Their Applications in Drug Delivery Systems for the Treatment of Bladder Cancer

    No full text
    Bladder cancer (BC) is the tenth most common type of cancer worldwide, affecting up to four times more men than women. Depending on the stage of the tumor, different therapy protocols are applied. Non-muscle-invasive cancer englobes around 70% of the cases and is usually treated using the transurethral resection of bladder tumor (TURBIT) followed by the instillation of chemotherapy or immunotherapy. However, due to bladder anatomy and physiology, current intravesical therapies present limitations concerning permeation and time of residence. Furthermore, they require several frequent catheter insertions with a reduced interval between doses, which is highly demotivating for the patient. This scenario has encouraged several pieces of research focusing on the development of drug delivery systems (DDS) to improve drug time residence, permeation capacity, and target release. In this review, the current situation of BC is described concerning the disease and available treatments, followed by a report on the main DDS developed in the past few years, focusing on those based on mucoadhesive polymers as a strategy. A brief review of methods to evaluate mucoadhesion properties is also presented; lastly, different polymers suitable for this application are discussed
    corecore