16 research outputs found

    Functional Vascular Tissue Engineering Inspired by Matricellular Proteins

    Get PDF
    Modern regenerative medicine, and tissue engineering specifically, has benefited from a greater appreciation of the native extracellular matrix (ECM). Fibronectin, collagen, and elastin have entered the tissue engineer's toolkit; however, as fully decellularized biomaterials have come to the forefront in vascular engineering it has become apparent that the ECM is comprised of more than just fibronectin, collagen, and elastin, and that cell-instructive molecules known as matricellular proteins are critical for desired outcomes. In brief, matricellular proteins are ECM constituents that contrast with the canonical structural proteins of the ECM in that their primary role is to interact with the cell. Of late, matricellular genes have been linked to diseases including connective tissue disorders, cardiovascular disease, and cancer. Despite the range of biological activities, this class of biomolecules has not been actively used in the field of regenerative medicine. The intent of this review is to bring matricellular proteins into wider use in the context of vascular tissue engineering. Matricellular proteins orchestrate the formation of new collagen and elastin fibers that have proper mechanical properties—these will be essential components for a fully biological small diameter tissue engineered vascular graft (TEVG). Matricellular proteins also regulate the initiation of thrombosis via fibrin deposition and platelet activation, and the clearance of thrombus when it is no longer needed—proper regulation of thrombosis will be critical for maintaining patency of a TEVG after implantation. Matricellular proteins regulate the adhesion, migration, and proliferation of endothelial cells—all are biological functions that will be critical for formation of a thrombus-resistant endothelium within a TEVG. Lastly, matricellular proteins regulate the adhesion, migration, proliferation, and activation of smooth muscle cells—proper control of these biological activities will be critical for a TEVG that recellularizes and resists neointimal formation/stenosis. We review all of these functions for matricellular proteins here, in addition to reviewing the few studies that have been performed at the intersection of matricellular protein biology and vascular tissue engineering

    Future Perspectives on the Role of Stem Cells and Extracellular Vesicles in Vascular Tissue Regeneration

    Get PDF
    Vascular tissue engineering is an area of regenerative medicine that attempts to create functional replacement tissue for defective segments of the vascular network. One approach to vascular tissue engineering utilizes seeding of biodegradable tubular scaffolds with stem (and/or progenitor) cells wherein the seeded cells initiate scaffold remodeling and prevent thrombosis through paracrine signaling to endogenous cells. Stem cells have received an abundance of attention in recent literature regarding the mechanism of their paracrine therapeutic effect. However, very little of this mechanistic research has been performed under the aegis of vascular tissue engineering. Therefore, the scope of this review includes the current state of TEVGs generated using the incorporation of stem cells in biodegradable scaffolds and potential cell-free directions for TEVGs based on stem cell secreted products. The current generation of stem cell-seeded vascular scaffolds are based on the premise that cells should be obtained from an autologous source. However, the reduced regenerative capacity of stem cells from certain patient groups limits the therapeutic potential of an autologous approach. This limitation prompts the need to investigate allogeneic stem cells or stem cell secreted products as therapeutic bases for TEVGs. The role of stem cell derived products, particularly extracellular vesicles (EVs), in vascular tissue engineering is exciting due to their potential use as a cell-free therapeutic base. EVs offer many benefits as a therapeutic base for functionalizing vascular scaffolds such as cell specific targeting, physiological delivery of cargo to target cells, reduced immunogenicity, and stability under physiological conditions. However, a number of points must be addressed prior to the effective translation of TEVG technologies that incorporate stem cell derived EVs such as standardizing stem cell culture conditions, EV isolation, scaffold functionalization with EVs, and establishing the therapeutic benefit of this combination treatment

    Combating Adaptation to Cyclic Stretching by Prolonging Activation of Extracellular Signal-Regulated Kinase

    No full text
    In developing implantable tissues based on cellular remodeling of a fibrin scaffold, a key indicator of success is high collagen content. Cellular collagen synthesis is stimulated by cyclic stretching but is limited by cellular adaptation. Adaptation is mediated by deactivation of extracellular signal-regulated kinase (ERK); therefore inhibition of ERK deactivation should improve mechanically stimulated collagen production and accelerate the development of strong engineered tissues. The hypothesis of this study is that p38 mitogen activated protein kinase (p38) activation by stretching limits ERK activation and that chemical inhibition of p38 α/γ isoforms with SB203580 will increase stretching-induced ERK activation and collagen production. Both p38 and ERK were activated by 15 min of stretching but only p38 remained active after 1 h. After an effective dose of inhibitor was identified using cell monolayers, 5 µM SB203580 was found to increase ERK activation by two-fold in cyclically stretched fibrin-based tissue constructs. When 5 µM SB203580 was added to the culture medium of constructs exposed to 3 weeks of incremental amplitude cyclic stretch, 2.6 fold higher stretching-induced total collagen was obtained. In conclusion, SB203580 circumvents adaptation to stretching induced collagen production and may be useful in engineering tissues where mechanical strength is a priority

    Monitoring Collagen Transcription by Vascular Smooth Muscle Cells in Fibrin-Based Tissue Constructs

    No full text
    Current methods for measuring collagen content in engineered tissues are incompatible with monitoring of collagen production because they require destruction of the tissue. We have implemented a luciferase-based strategy to monitor collagen production noninvasively. Fibrin-based tissue constructs made using vascular smooth muscle cells stably transfected with a collagen I promoter/luciferase transgene developed with collagen content comparable to control cells, but could be imaged noninvasively to follow collagen transcription during tissue growth in vitro. We showed that these cells reported collagen I production at the transcriptional level in response to the growth factor transforming growth factor-β1 and fibrinolytic inhibition by ɛ-aminocaproic acid and that these changes were consistent with changes at the mRNA and protein levels. As these cells report collagen changes instantly and without tissue destruction, they will facilitate construct optimization using multiple stimuli to produce functional engineered tissues

    Extracellular Vesicles Derived from Primary Adipose Stromal Cells Induce Elastin and Collagen Deposition by Smooth Muscle Cells within 3D Fibrin Gel Culture

    No full text
    Macromolecular components of the vascular extracellular matrix (ECM), particularly elastic fibers and collagen fibers, are critical for the proper physiological function of arteries. When the unique biomechanical combination of these fibers is disrupted, or in the ultimate extreme where fibers are completely lost, arterial disease can emerge. Bioengineers in the realms of vascular tissue engineering and regenerative medicine must therefore ideally consider how to create tissue engineered vascular grafts containing the right balance of these fibers and how to develop regenerative treatments for situations such as an aneurysm where fibers have been lost. Previous work has demonstrated that the primary cells responsible for vascular ECM production during development, arterial smooth muscle cells (SMCs), can be induced to make new elastic fibers when exposed to secreted factors from adipose-derived stromal cells. To further dissect how this signal is transmitted, in this study, the factors were partitioned into extracellular vesicle (EV)-rich and EV-depleted fractions as well as unseparated controls. EVs were validated using electron microscopy, dynamic light scattering, and protein quantification before testing for biological effects on SMCs. In 2D culture, EVs promoted SMC proliferation and migration. After 30 days of 3D fibrin construct culture, EVs promoted SMC transcription of the elastic microfibril gene FBN1 as well as SMC deposition of insoluble elastin and collagen. Uniaxial biomechanical properties of strand fibrin constructs were no different after 30 days of EV treatment versus controls. In summary, it is apparent that some of the positive effects of adipose-derived stromal cells on SMC elastogenesis are mediated by EVs, indicating a potential use for these EVs in a regenerative therapy to restore the biomechanical function of vascular ECM in arterial disease

    Fibrin Degradation Enhances Vascular Smooth Muscle Cell Proliferation and Matrix Deposition in Fibrin-Based Tissue Constructs Fabricated In Vitro

    No full text
    Completely biological tissue replacements can be fabricated by entrapping cells in a molded fibrin gel. Over time, the fibrin is degraded and replaced with cell-produced extracellular matrix. However, the relationship between fibrin degradation and matrix deposition has not been elucidated. We developed techniques to quantify fibrin degradation products (FDP) and examine plasmin activity in the conditioned medium from fibrin-based constructs. Fibrin-based tissue constructs fabricated with vascular smooth muscle cells (vSMC) were cultured for 5 weeks in the presence of varied concentrations of the fibrinolysis inhibitor ɛ-aminocaproic acid and cellularity, and deposited collagen and elastin were measured weekly. These data revealed that increasing concentrations of ɛ-aminocaproic acid led to delayed and diminished FDP production, lower vSMC proliferation, and decreased collagen and elastin deposition. FDP were shown to have a direct biological effect on vSMC cultures and vSMC within the fibrin-based constructs. Supplementing construct cultures with 250 or 500 μg/mL FDP led to 30% higher collagen deposition than the untreated controls. FDP concentrations as high as 250 μg/mL were estimated to exist within the constructs, indicating that FDP generation during remodeling of the fibrin-based constructs exerted direct biological activity. These results help explain many of the positive outcomes reported with fibrin-based tissue constructs in the literature, as well as demonstrate the importance of regulating plasmin activity during their fabrication

    Cell-Induced Alignment Augments Twitch Force in Fibrin Gel–Based Engineered Myocardium via Gap Junction Modification

    No full text
    A high-potential therapy for repairing the heart post-myocardial infarction is the implantation of tissue-engineered myocardium. While several groups have developed constructs that mimic the aligned structure of the native myocardium, to date no one has investigated the particular functional benefits conferred by alignment. In this study we created myocardial constructs in both aligned and isotropic configurations by entrapping neonatal rat cardiac cells in fibrin gel. Constructs were cultured statically for 2 weeks, and then characterized. Histological staining showed spread cells that express typical cardiac cell markers in both configurations. Isotropic constructs had higher final cell and collagen densities, but lower passive mechanical properties than aligned constructs. Twitch force associated with electrical pacing, however, was 181% higher in aligned constructs, and this improvement was greater than what would be expected from merely aligning the cells in the isotropic constructs in the force measurement direction. Our hypothesis was that this was due to improved gap junction formation/function facilitated by cell alignment, and further analyses of the twitch force data, as well as Western blot results of connexin 43 expression and phosphorylation state, support this hypothesis. Regardless of the specific mechanism, the results presented in this study underscore the importance of recapitulating the anisotropy of the native tissue in engineered myocardium
    corecore