29 research outputs found
Correlation between microstructure and magnetotransport in organic semiconductor spin valve structures
We have studied magnetotransport in organic-inorganic hybrid multilayer
junctions. In these devices, the organic semiconductor (OSC) Alq
(tris(8-hydroxyquinoline) aluminum) formed a spacer layer between ferromagnetic
(FM) Co and Fe layers. The thickness of the Alq layer was in the range of
50-150 nm. Positive magnetoresistance (MR) was observed at 4.2 K in a current
perpendicular to plane geometry, and these effects persisted up to room
temperature. The devices' microstructure was studied by X-ray reflectometry,
Auger electron spectroscopy and polarized neutron reflectometry (PNR). The
films show well-defined layers with modest average chemical roughness (3-5 nm)
at the interface between the Alq and the surrounding FM layers.
Reflectometry shows that larger MR effects are associated with smaller
FM/Alq interface width (both chemical and magnetic) and a magnetically dead
layer at the Alq/Fe interface. The PNR data also show that the Co layer,
which was deposited on top of the Alq, adopts a multi-domain magnetic
structure at low field and a perfect anti-parallel state is not obtained. The
origins of the observed MR are discussed and attributed to spin coherent
transport. A lower bound for the spin diffusion length in Alq was estimated
as nm at 80 K. However, the subtle correlations between
microstructure and magnetotransport indicate the importance of interfacial
effects in these systems.Comment: 21 pages, 11 figures and 2 table
Facile fabrication and characterization of kraft lignin@Fe3O4 nanocomposites using pH driven precipitation: Effects on increasing lignin content
This work offers a facile fabrication method for lignin nanocomposites through the assembly of kraft lignin onto magnetic nanoparticles (Fe3O4) based on pH-driven precipitation, without needing organic solvents or lignin functionalization. Kraft lignin@Fe3O4 multicore nanocomposites fabrication proceeded using a simple, pH-driven precipitation technique. An alkaline solution for kraft lignin (pH 12) was rapidly injected into an aqueous-based Fe3O4 nanoparticle colloidal suspension (pH 7) under constant mixing conditions, allowing the fabrication of lignin magnetic nanocomposites. The effects of increasing lignin to initial Fe3O4 mass content (g/g), increasing in ratio from 1:1 to 20:1, are discussed with a complete chemical, structural, and morphological characterization. Results showed that nanocomposites fabricated above 5:1 lignin:Fe3O4 had the highest lignin coverage and content (\u3e20%), possessed superparamagnetic properties (Ms ≈ 45,000 A·m2/kg2); had a negative surface charge (−30 mV), and formed multicore nanostructures (DH ≈ 150 nm). The multicore lignin@Fe3O4 nanocomposites allowed rapid magnetically induced separations from suspension. After 5 min exposure to a rare-earth neodymium magnet (1.27 mm × 1.27 mm × 5.08 mm), lignin@Fe3O4 nanocomposites exhibited a maximum methylene blue removal efficiency of 74.1% ± 7.1%. These nanocomposites have potential in magnetically induced separations to remove organic dyes, heavy metals, or other lignin adsorbates
Damaging variants in FOXI3 cause microtia and craniofacial microsomia
Q1Q1Pacientes con Microtia y MicrosomÃa craneofacialPurpose:
Craniofacial microsomia (CFM) represents a spectrum of craniofacial malformations, ranging from isolated microtia with or without aural atresia to underdevelopment of the mandible, maxilla, orbit, facial soft tissue, and/or facial nerve. The genetic causes of CFM remain largely unknown.
Methods:
We performed genome sequencing and linkage analysis in patients and families with microtia and CFM of unknown genetic etiology. The functional consequences of damaging missense variants were evaluated through expression of wild-type and mutant proteins in vitro.
Results:
We studied a 5-generation kindred with microtia, identifying a missense variant in FOXI3 (p.Arg236Trp) as the cause of disease (logarithm of the odds = 3.33). We subsequently identified 6 individuals from 3 additional kindreds with microtia-CFM spectrum phenotypes harboring damaging variants in FOXI3, a regulator of ectodermal and neural crest development. Missense variants in the nuclear localization sequence were identified in cases with isolated microtia with aural atresia and found to affect subcellular localization of FOXI3. Loss of function variants were found in patients with microtia and mandibular hypoplasia (CFM), suggesting dosage sensitivity of FOXI3.
Conclusion:
Damaging variants in FOXI3 are the second most frequent genetic cause of CFM, causing 1% of all cases, including 13% of familial cases in our cohort.https://orcid.org/0000-0003-3822-7780https://orcid.org/0000-0002-0729-6866Revista Internacional - IndexadaA1N
A Serological Survey of Infectious Disease in Yellowstone National Park’s Canid Community
BACKGROUND:Gray wolves (Canis lupus) were reintroduced into Yellowstone National Park (YNP) after a >70 year absence, and as part of recovery efforts, the population has been closely monitored. In 1999 and 2005, pup survival was significantly reduced, suggestive of disease outbreaks. METHODOLOGY/PRINCIPAL FINDINGS:We analyzed sympatric wolf, coyote (Canis latrans), and red fox (Vulpes vulpes) serologic data from YNP, spanning 1991-2007, to identify long-term patterns of pathogen exposure, identify associated risk factors, and examine evidence for disease-induced mortality among wolves for which there were survival data. We found high, constant exposure to canine parvovirus (wolf seroprevalence: 100%; coyote: 94%), canine adenovirus-1 (wolf pups [0.5-0.9 yr]: 91%, adults [>or=1 yr]: 96%; coyote juveniles [0.5-1.5 yrs]: 18%, adults [>or=1.6 yrs]: 83%), and canine herpesvirus (wolf: 87%; coyote juveniles: 23%, young adults [1.6-4.9 yrs]: 51%, old adults [>or=5 yrs]: 87%) suggesting that these pathogens were enzootic within YNP wolves and coyotes. An average of 50% of wolves exhibited exposure to the protozoan parasite, Neospora caninum, although individuals' odds of exposure tended to increase with age and was temporally variable. Wolf, coyote, and fox exposure to canine distemper virus (CDV) was temporally variable, with evidence for distinct multi-host outbreaks in 1999 and 2005, and perhaps a smaller, isolated outbreak among wolves in the interior of YNP in 2002. The years of high wolf-pup mortality in 1999 and 2005 in the northern region of the park were correlated with peaks in CDV seroprevalence, suggesting that CDV contributed to the observed mortality. CONCLUSIONS/SIGNIFICANCE:Of the pathogens we examined, none appear to jeopardize the long-term population of canids in YNP. However, CDV appears capable of causing short-term population declines. Additional information on how and where CDV is maintained and the frequency with which future epizootics might be expected might be useful for future management of the Northern Rocky Mountain wolf population
Formation of a Crack-Free, Hybrid Skin Layer with Tunable Surface Topography and Improved Gas Permeation Selectivity on Elastomers Using Gel–Liquid Infiltration Polymerization
http://deepblue.lib.umich.edu/bitstream/2027.42/174990/2/m-04-00455.pdfPublished versionDescription of m-04-00455.pdf : Published versio
Visualizing Nanoparticle Dissolution by Imaging Mass Spectrometry
We
demonstrate the ability to visualize nanoparticle dissolution
while simultaneously providing chemical signatures that differentiate
between citrate-capped silver nanoparticles (AgNPs), AgNPs forced
into dissolution via exposure to UV radiation, silver nitrate (AgNO<sub>3</sub>), and AgNO<sub>3</sub>/citrate deposited from aqueous solutions
and suspensions. We utilize recently developed inkjet printing (IJP)
protocols to deposit the different solutions/suspensions as NP aggregates
and soluble species, which separate onto surfaces <i>in situ</i>, and collect mass spectral imaging data <i>via</i> time-of-flight
secondary ion mass spectrometry (TOF-SIMS). Resulting 2D Ag<sup>+</sup> chemical images provide the ability to distinguish between the different
Ag-containing starting materials and, when coupled with mass spectral
peak ratios, provide information-rich data sets for quick and reproducible
visualization of NP-based aqueous constituents. When compared to other
measurements aimed at studying NP dissolution, the IJP-TOF-SIMS approach
offers valuable information that can potentially help in understanding
the complex equilibria in NP-containing solutions and suspensions,
including NP dissolution kinetics and extent of overall dissolution
Electron beam irradiation of dimethyl-(acetylacetonate) gold(III) adsorbed onto solid substrates
Electron beam induced deposition of organometallic precursors has emerged as an effective and versatile method for creating two-dimensional and three-dimensional metal-containing nanostructures. However, to improve the properties and optimize the chemical composition of nanostructures deposited in this way, the electron stimulated decomposition of the organometallic precursors must be better understood. To address this issue, we have employed an ultrahigh vacuum-surface science approach to study the electron induced reactions of dimethyl-(acetylacetonate) gold(III) [AuIII(acac)Me2] adsorbed onto solid substrates. Using thin molecular films adsorbed onto cooled substrates, surface reactions, reaction kinetics, and gas phase products were studied in the incident energy regime between 40 and 1500 eV using a combination of x-ray photoelectron spectroscopy (XPS), reflection absorption infrared spectroscopy (RAIRS), and mass spectrometry (MS). XPS and RAIRS data indicate that electron irradiation of AuIII(acac)Me2 is accompanied by the reduction in AuIII to a metallic Au0 species embedded in a dehydrogenated carbon matrix, while MS reveals the concomitant evolution of methane, ethane, carbon monoxide, and hydrogen. The electron stimulated decomposition of AuIII(acac)Me2 is first-order with respect to the surface coverage of the organometallic precursor, and exhibits a rate constant that is proportional to the electron flux. At an incident electron energy of 520 eV, the total reaction cross section was ? 3.6×10?16?cm2. As a function of the incident electron energy, the maximum deposition yield was observed at ?175 eV. The structure of discrete Au-containing deposits formed at room temperature by rastering an electron beam across a highly ordered pyrolytic graphite substrate in the presence of a constant partial pressure of AuIII(acac)Me2 was also investigated by atomic force microscopy.Imaging Science and TechnologyApplied Science