55 research outputs found
Characterization of thromboxane A2 receptor and TRPV1 mRNA expression in cultured sensory neurons
Thromboxane A2 (TxA2) is an arachidonic acid metabolite that stimulates platelet aggregation and vasoconstriction when released from platelets and other cell types during tissue trauma. More recent research has demonstrated that TxA2 can also stimulate vagal and spinal sensory nerves. The purpose of this study was twofold. One, we compared the expression of the TxA2 receptor (TxA2R) in neurons from two sensory ganglia: the nodose ganglion (NG) containing cell bodies of vagal afferent nerves and the thoracic dorsal root ganglion (DRG) containing cell bodies of spinal afferent nerves. Two, we determined if TxA2R co-localizes with mRNA for the nociceptive marker, TRPV1, which is the receptor for the noxious substance capsaicin. We found a greater percentage of neurons in the NG that are positive for TxA2R expression than in the DRG. We also found that there was no correlation of expression of TxA2R with TRPV1. These data suggest that while TxA2R is expressed in both vagal and spinal neurons, TxA2 may elicit stronger vagal or parasympathetic reflexes in the rabbit when released during tissue trauma depending on the location of release. Our data also indicate that TxA2 is likely to stimulate both nociceptive and non-nociceptive neurons thereby broadening the types of neurons and reflexes that it may excite
Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia
© 2008 Henry et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Adsorption transition of a self-avoiding polymer chain onto a rigid rod
The subject of this work is the adsorption transition of a long flexible
self-avoiding polymer chain onto a rigid thin rod. The rod is represented by a
cylinder of radius R with a short-ranged attractive surface potential for the
chain monomers. General scaling results are obtained by using renormalization
group arguments in conjunction with available results for quantum field
theories with curved boundaries [McAvity and Osborn 1993 Nucl. Phys. B 394,
728]. Relevant critical exponents are identified and estimated using geometric
arguments.Comment: 19 pages, 4 figures. To appear in: J. Phys.: Condens. Matter, special
issue dedicated to Lothar Schaefer on the occasion of his 60th birthda
Polymer depletion interaction between two parallel repulsive walls
The depletion interaction between two parallel repulsive walls confining a
dilute solution of long and flexible polymer chains is studied by
field-theoretic methods. Special attention is paid to self-avoidance between
chain monomers relevant for polymers in a good solvent. Our direct approach
avoids the mapping of the actual polymer chains on effective hard or soft
spheres. We compare our results with recent Monte Carlo simulations [A. Milchev
and K. Binder, Eur. Phys. J. B 3, 477 (1998)] and with experimental results for
the depletion interaction between a spherical colloidal particle and a planar
wall in a dilute solution of nonionic polymers [D. Rudhardt, C. Bechinger, and
P. Leiderer, Phys. Rev. Lett. 81, 1330 (1998)].Comment: 17 pages, 3 figures. Final version as publishe
Critical adsorption on curved objects
A systematic fieldtheoretic description of critical adsorption on curved
objects such as spherical or rodlike colloidal particles immersed in a fluid
near criticality is presented. The temperature dependence of the corresponding
order parameter profiles and of the excess adsorption are calculated
explicitly. Critical adsorption on elongated rods is substantially more
pronounced than on spherical particles. It turns out that, within the context
of critical phenomena in confined geometries, critical adsorption on a
microscopically thin `needle' represents a distinct universality class of its
own. Under favorable conditions the results are relevant for the flocculation
of colloidal particles.Comment: 52 pages, 10 figure
Equilibrium shapes of flat knots
We study the equilibrium shapes of prime and composite knots confined to two
dimensions. Using rigorous scaling arguments we show that, due to self-avoiding
effects, the topological details of prime knots are localised on a small
portion of the larger ring polymer. Within this region, the original knot
configuration can assume a hierarchy of contracted shapes, the dominating one
given by just one small loop. This hierarchy is investigated in detail for the
flat trefoil knot, and corroborated by Monte Carlo simulations.Comment: 4 pages, 3 figure
Introduction
info:eu-repo/semantics/publishe
Early Post-Vaccination Gene Signatures Correlate With the Magnitude and Function of Vaccine-Induced HIV Envelope-Specific Plasma Antibodies in Infant Rhesus Macaques
A better understanding of the impact of early innate immune responses after vaccine priming on vaccine-elicited adaptive immune responses could inform rational design for effective HIV vaccines. The current study compared the whole blood molecular immune signatures of a 3M-052-SE adjuvanted HIV Env protein vaccine to a regimen combining the adjuvanted Env protein with simultaneous administration of a modified Vaccinia Ankara vector expressing HIV Env in infant rhesus macaques at days 0, 1, and 3 post vaccine prime. Both vaccines induced a rapid innate response, evident by elevated inflammatory plasma cytokines and altered gene expression. We identified 25 differentially-expressed genes (DEG) on day 1 compared to day 0 in the HIV protein vaccine group. In contrast, in the group that received both the Env protein and the MVA-Env vaccine only two DEG were identified, implying that the MVA-Env modified the innate response to the adjuvanted protein vaccine. By day 3, only three DEG maintained altered expression, indicative of the transient nature of the innate response. The DEG represented immune pathways associated with complement activation, type I interferon and interleukin signaling, pathogen sensing, and induction of adaptive immunity. DEG expression on day 1 was correlated to Env-specific antibody responses, in particular antibody-dependent cytotoxicity responses at week 34, and Env-specific follicular T helper cells. Results from network analysis supported the interaction of DEG and their proteins in B cell activation. These results emphasize that vaccine-induced HIV-specific antibody responses can be optimized through the modulation of the innate response to the vaccine prime
Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector
A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
- …