6 research outputs found

    Using Diets to Reveal Overlap and Egg Predation among Benthivorous Fishes in Lake Michigan

    Full text link
    Ecological stability in the Laurentian Great Lakes has been altered by nonindigenous species, such as the Round Goby Neogobius melanostomus and dreissenid mussels, and by declines in native amphipods Diporeia spp. We evaluated whether these changes could influence diet overlap between three benthivorous fishes (Slimy Sculpin Cottus cognatus, Deepwater Sculpin Myoxocephalus thompsonii, and Round Goby) and whether predation on eggs of native species was occurring. We examined diets of fish collected at depths of 69â 128 m in Lake Michigan offshore of Frankfort and Muskegon, Michigan, and Two Rivers and Sturgeon Bay, Wisconsin, during Januaryâ May 2009 and 2010. Important prey (by dry weight proportion and by percent frequency of occurrence) for Slimy Sculpin were Mysis (0.34; 45%), Diporeia (0.16; 34%), and Limnocalanus macrurus (0.22; 68%); important prey for Deepwater Sculpin were Mysis (0.74; 92%) and Diporeia (0.16; 54%). Round Goby consumed mainly bivalves (i.e., dreissenids: 0.68; 95%) and Mysis (0.15; 37%). The two sculpin species consumed the eggs of Bloaters Coregonus hoyi (Slimy Sculpin: 0.04, 11%; Deepwater Sculpin: 0.02, 7%) and the eggs of Deepwater Sculpin (Slimy Sculpin: 0.03, 13%; Deepwater Sculpin: 0.05, 16%) during Februaryâ May at all sites. Round Goby also consumed eggs of these species but at lower levels (â ¤0.01; <1%). Diet overlap was identified between sculpin species at Frankfort and Sturgeon Bay, suggesting possible interspecific competition, but their diets did not overlap at Two Rivers; diet overlap was never observed between Round Goby and either sculpin species. Given that (1) diet overlap varied by site and (2) diet proportions varied spatially more than temporally, benthivores appear to be exhibiting localized responses to recent ecological changes. Overall, these results reveal that egg predation and interspecific competition could be important interactions to consider in future examinations of the population dynamics of these species or in ecosystem models that forecast how fisheries will respond to possible perturbations or management scenarios.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141248/1/tafs0492.pd

    Metabarcoding of native and invasive species in stomach contents of Great Lakes fishes.

    No full text
    As aquatic invasive species (AIS) proliferate worldwide, a better understanding of their roles in invaded habitats is needed to inform management and introduction prevention strategies and priorities. Metabarcoding of stomach content DNA (scDNA) shows considerable promise in such regard. We thus metabarcoded scDNA from two non-native fish species (alewife (Alosa pseudoharengus) and rainbow smelt (Osmerus mordax)), and three native ones (bloater (Coregonus hoyi), ninespine stickleback (Pungitius pungitius), and slimy sculpin (Cottus cognatus)). Fishes (N = 376) were sampled in spring 2009 and 2010 from 73-128 m depths at three Lake Michigan sites. Four mitochondrial cytochrome oxidase 1 (CO1) primer sets designed to target five potential AIS prey, and a universal aquatic invertebrate CO1 primer set targeting both native and AIS prey were used. Quality controlled prey amplicons were matched to three AIS prey: Bythotrephes longimanus (mean percent frequency occurrence, all samples = 7%), Cercopagis pengoi (5%), and Dreissena rostriformis bugensis (11%). Neither invasive prey Dreissena polymorpha nor Hemimysis anomala were detected. Native prey Leptodiaptomus sicilis, Limnocalanus macrurus, and Mysis diluviana were relatively common in scDNA (respective mean percent occurrences, all samples: 48%, 25%, 42%). Analysis of variation in prey occurrences for sample site, predator species, sample year, sample depth, and predator total length (TL) indicated site and predator species were most important. However, B. longimanus occurrence in scDNA depended upon predator TL, perhaps indicative of its unique defensive spine limiting susceptibility to predation until fishes exceed species-specific gape-based limitations. Our analysis of native and invasive prey species indicated possible indirect AIS impacts such as native predators switching their diet due to AIS-driven losses of preferred native prey. Metabarcoding demonstrated that AIS are integrated components of the offshore Lake Michigan food web, with both native and non-native predators, and both invasive and native prey are affecting species interactions across multiple trophic levels

    Gelatinous Carbon Impacts Benthic Megafaunal Communities in a Continental Margin

    No full text
    Post-collapse of seasonal blooms of gelatinous zooplankton (Cnidaria, Ctenophora, and Thaliacea) sinking carcasses transports labile carbon (jelly-C) to benthic continental margins and the deep sea. In recent decades, bloom frequency and intensity have increased globally; however, how sinking jelly-C affects benthic communities is poorly known. Further, as climate change and other anthropogenic impacts may increase gelatinous blooms in the future, understanding the contributions and impacts of jelly-C upon benthic communities is of pivotal importance. Thus, in this study, we assessed jelly-C deposits post-intense blooming of a pelagic species of marine colonial gelatinous tunicate in the Thaliacean class, Pyrosoma atlanticum. We studied the seabed using a remotely operated vehicle (ROV) from 26 to 1,276 m, documenting jelly-C deposits and species of the megafaunal benthic community. Environmental variables from water column profiles at transects near our own off the Ivory Coast of West Africa were used in assessments. Jelly-C biomass peaked at 400 m (1,500 grC 100 m−2) and remained at the average (300 grC 100 m−2) through 1,276 m. Typically, in depth strata between 300 and 800 m, peaks in jelly-C biomass (500 to 1,500 grC 100 m−2) corresponded to areas with significantly reduced benthic megafaunal species abundances as well as diversity. From 800 to 1,276 m, we noted patchier jelly-C biomass deposits where individual megafauna species abundances and diversity correspondingly increased, yet total organism counts remained low. We observed 11 species from 5 phyla directly feeding on jelly-C and 10 single-species aggregations triggering megafaunal dominance events at various localized depth strata. Although such dynamics have been hypothesized and examined for some time with respect to phytodetritus biomass, they have been rarely described for jelly-C. Thus, our novel findings for jelly-C dynamics in the offshore regions can help to provide a better understanding of the ecological role that this component plays in marine benthic ecosystems and continental margins

    A new method to generate a high-resolution global distribution map of lake chlorophyll

    No full text
    A new method was developed, evaluated, and applied to generate a global dataset of growing-season chlorophyll-a (chl) concentrations in 2011 for freshwater lakes. Chl observations from freshwater lakes are valuable for estimating lake productivity as well as assessing the role that these lakes play in carbon budgets. The standard 4 km NASA OceanColor L3 chlorophyll concentration products generated from MODIS and MERIS sensor data are not sufficiently representative of global chl values because these can only resolve larger lakes, which generally have lower chl concentrations than lakes of smaller surface area. Our new methodology utilizes the 300 m-resolution MERIS full-resolution full-swath (FRS) global dataset as input and does not rely on the land mask used to generate standard NASA products, which masks many lakes that are otherwise resolvable in MERIS imagery. The new method produced chl concentration values for 78,938 and 1,074 lakes in the northern and southern hemispheres, respectively. The mean chl for lakes visible in the MERIS composite was 19.2 ± 19.2, the median was 13.3, and the interquartile range was 3.90–28.6 mg m−3. The accuracy of the MERIS-derived values was assessed by comparison with temporally near-coincident and globally distributed in situmeasurements from the literature (n = 185, RMSE = 9.39, R2 = 0.72). This represents the first global-scale dataset of satellite-derived chl estimates for medium to large lakes
    corecore