934 research outputs found

    Modulation of anabolic and catabolic responses via a porous polymer scaffold manufactured using thermally induced phase separation

    Get PDF
    We describe two studies encompassing the iterative refinement of a polymer-based rhBMP-2 delivery system for bone tissue engineering. Firstly, we compared the boneforming capacity of porous poly(D,L-lactic-co-glycolic acid) (PLGA) scaffolds produced by thermally induced phase separation (TIPS) with non-porous solvent cast poly(D,L-lactic acid) (PDLLA) used previously. Secondly, we examined the potential synergy between rhBMP-2 and local bisphosphonate in the PLGA scaffold system. In vivo ectopic bone formation studies were performed in C57BL6/J mice. Polymer scaffolds containing 0, 5, 10 or 20 μg rhBMP-2 were inserted into the dorsal musculature. At all rhBMP-2 doses, porous PLGA produced significantly higher bone volume (BV, mm) than the solid PDLLA scaffolds. Next, porous PLGA scaffolds containing 10μg rhBMP-2 ±0.2, or 2μg zoledronic acid (ZA) were inserted into the hind-limb musculature. Co-delivery of local 10μg rhBMP-2/2μg ZA significantly augmented bone formation compared with rhBMP-2 alone (400 % BV increase, p < 0.01). Hydroxyapatite microparticle (HAp) addition (2% w/w) to the 10μg rhBMP-2/0.2μg ZA group increased BV (200 %, p < 0.01). We propose that this was due to controlled ZA release of HAp-bound ZA. Consistent with this, elution analyses showed that HAp addition did not alter the rhBMP-2 elution, but delayed ZA release. Moreover, 2 % w/w HAp addition reduced the scaffold's compressive properties, but did not alter ease of surgical handling. In summary, our data show that refinement of the polymer selection and scaffold fabrication can enhance rhBMP-2 induced bone formation in our bone tissue engineering implant, and this can be further optimised by the local co-delivery of ZA/HAp

    Spatial control of bone formation using a porous polymer scaffold co-delivering anabolic RHBMP-2 and anti-resorptive agents

    Get PDF
    Current clinical delivery of recombinant human bone morphogenetic proteins (rhBMPs) utilises freeze-dried collagen. Despite effective new bone generation, rhBMP via collagen can be limited by significant complications due to inflammation and uncontrolled bone formation. This study aimed to produce an alternative rhBMP local delivery system to permit more controllable and superior rhBMP-induced bone formation. Cylindrical porous poly(lactic-co-glycolic acid) (PLGA) scaffolds were manufactured by thermally-induced phase separation. Scaffolds were encapsulated with anabolic rhBMP-2 (20 μg) ± anti-resorptive agents: zoledronic acid (5 μg ZA), ZA pre-adsorbed onto hydroxyapatite microparticles, (5 μg ZA/2 % HA) or IkappaB kinase (IKK) inhibitor (10 μg PS-1145). Scaffolds were inserted in a 6-mm critical-sized femoral defect in Wistar rats, and compared against rhBMP-2 via collagen. The regenerate region was examined at 6 weeks by 3D microCT and descriptive histology. MicroCT and histology revealed rhBMP-induced bone was more restricted in the PLGA scaffolds than collagen scaffolds (-92.3 % TV, p < 0.01). The regenerate formed by PLGA + rhBMP-2/ZA/HA showed comparable bone volume to rhBMP-2 via collagen, and bone mineral density was +9.1 % higher (p < 0.01). Local adjunct ZA/HA or PS-1145 significantly enhanced PLGA + rhBMP-induced bone formation by +78.2 % and +52.0 %, respectively (p ≤ 0.01). Mechanistically, MG-63 human osteoblast-like cells showed cellular invasion and proliferation within PLGA scaffolds. In conclusion, PLGA scaffolds enabled superior spatial control of rhBMP-induced bone formation over clinically-used collagen. The PLGA scaffold has the potential to avoid uncontrollable bone formation-related safety issues and to customise bone shape by scaffold design. Moreover, local treatment with anti-resorptive agents incorporated within the scaffold further augmented rhBMP-induced bone formation

    The syntactic and semantic roots of floating quantification

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Linguistics and Philosophy, 2006.Includes bibliographical references (p. 219-230).Through the study of floating quantifiers in a variety of languages, I demonstrate that floating quantification is not a uniform phenomenon and outline a series of puzzles that force us to adopt a two-part analysis. I argue that certain floating quantifiers are related to their nominal associate by syntactic transformation (the stranding approach, Sportiche 1988; Miyagawa 1989) and that others are related only semantically (the adverbial approach, Dowty and Brody 1984; Bobaljik 1995; Doetjes 1997). Evidence for this split comes from the syntactic distribution of these elements within and across languages and from two other points of difference. First, I show that each type of floating quantifier imposes a different restriction on the movement of its nominal associate. An adverbial floating quantifier restricts its associate to A-movement, while a stranded floating quantifier restricts its associate to A'-movement. Furthermore, these two classes of quantifiers divide along semantic lines: Adverbial floating quantifiers have exhaustive semantics, while stranded adnominal floating quantifiers are non-exhaustive. The analysis developed here provides an explanation for these syntactic and semantic differences.(cont.) The syntactic behavior is linked to the structural make-up of the two types of elements and to more general syntactic principles. I propose that quantifier stranding can only arise through A'-movement and that this restriction reflects a general ban on subphrasal extraction through A-movement. I suggest that this difference in locality conditions has roots in deeper differences between A- and A'-movement. My analysis of adverbial floating quantifier structure draws on Doetjes's (1997) analysis of adverbial floating quantifiers as containing a possibly null pronominal element. I extend this analysis to treat a variety of characteristics found with adverbial floating quantifiers, including agreement patterns, co-occurrence with pronouns, and locality conditions. The presence of this null pronominal is also argued to account for the observed A-movement restriction by disallowing cross-over via A'-movement. Thus the behavior of floating quantifiers can be used as a tool for the investigation of differences among movement types. The semantic differences that exist between types of floating quantifiers are tied to the syntax of partitivity. I argue that quantifier stranding can only arise via a partitive structure and that only non-exhaustive elements are eligible for this structure.(cont.) On the other hand, only exhaustive elements can take part in the structure that is required for adverbial quantifier float. The analysis not only provides a solution to the puzzle of floating quantification cross-linguistically, but raises other more general issues. In particular, the present analysis forces us to reevaluate the interplay of A- and A'-movement in a derivation. I show that in some cases a phrase that is generally assumed to undergo both A- and A'-movement in fact undergoes direct A'-movement. Thus floating quantification provides fertile ground for the investigation of differences and interactions between these two types of displacement. The results presented here should also provide a model for the analysis of other types of split constituency across languages.by Justin Michael Fitzpatrick.Ph.D

    Analysis and Design of Low-Jitter Oscillators

    Get PDF
    This thesis presents an examination of the jitter performance of different oscillator types in the presence of flicker noise, white noise and power supply noise. Key results are achieved using time domain simulations to determine cycle jitter of several different oscillator architectures, semiconductor processes and component features. In the end, a design procedure is developed for creating a low-jitter oscillator in a TSMC .25mm CMOS semiconductor process

    Use of unmanned aerial vehicles (UAVs) for mark-resight nesting population estimation of adult female green sea turtles at Raine Island

    Get PDF
    Nester abundance is a key measure of the performance of the world's largest green turtle rookery at Raine Island, Australia, and has been estimated by mark-resight counts since 1984. Nesters are first marked by painting their carapace with a longitudinal white stripe. Painted and unpainted turtles are then counted by a surface observer on a small boat in waters adjacent to the reef. Unmanned aerial vehicles (UAV) and underwater video may provide more cost-effective and less biased alternatives to this approach, but estimates must be comparable with historical estimates. Here we compare and evaluate the three methods. We found comparatively little variation in resighting probabilities between consecutive days of sampling or time of day, which supports an underlying assumption of the method (i.e. demographic closure during sampling). This lack of bias in the location availability for detection of painted versus unpainted turtles and further supported by a parallel satellite tracking study of 40 turtles at Raine Island. Our results demonstrated that surface observers consistently reported higher proportions of marked turtles than either the UAV or underwater video method. This in turn yielded higher population estimates with UAV or underwater video compared to the historical surface observer method, which suggested correction factors of 1.53 and 1.73 respectively. We attributed this to observer search error because a white marked turtle is easier to spot than the non-marked turtle. In contrast, the UAV and underwater video methods allowed subsequent frame-by-frame review, thus reducing observer search error. UAVs were the most efficient in terms of survey time, personnel commitment and weather tolerance compared to the other methods. However, underwater video may also be a useful alternative for in-water mark-resight surveys of turtles

    Lesions of the ventral hippocampus attenuate the acquisition but not expression of sign‐tracking behavior in rats

    Full text link
    Individual variation in the attribution of motivational salience to reward‐related cues is believed to underlie addiction vulnerability. Pavlovian conditioned approach measures individual variation in motivational salience by identifying rats that are attracted to and motivated by reward cues (sign‐trackers) or motivationally fixed on the reward itself (goal‐trackers). Previously, it has been demonstrated that sign‐trackers are more vulnerable to addiction‐like behavior. Moreover, sign‐trackers release more dopamine in the nucleus accumbens than goal‐trackers in response to reward‐related cues, and sign‐ but not goal‐tracking behavior is dopamine‐dependent. In the present study, we investigated whether the ventral hippocampus, a potent driver of dopaminergic activity in the nucleus accumbens, modulates the acquisition and expression of Pavlovian conditioned approach behavior. In Experiment 1, lesions of the ventral, but not dorsal or total hippocampus, decreased sign‐tracking behavior. In Experiment 2, lesions of the ventral hippocampus did not affect the expression of sign‐ or goal‐tracking behaviors nor conditioned reinforcement. In addition, temporary inactivation of the ventral subiculum, the main output pathway of the ventral hippocampus, did not affect the expression of sign‐ or goal‐tracking behaviors. High‐pressure liquid chromatography of nucleus accumbens tissue punches revealed that ventral hippocampal lesions decreased levels of homovanillic acid and the homovanillic acid/dopamine ratio (a marker of dopamine release and metabolism) in only sign‐trackers, and decreased accumbal norepinephrine levels in both sign‐ and goal‐trackers. These results suggest that the ventral hippocampus is important for the acquisition but not expression of sign‐tracking behavior, possibly as a result of altered dopamine and norepinephrine in the nucleus accumbens. © 2016 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134415/1/hipo22619.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134415/2/hipo22619_am.pd
    corecore