2 research outputs found
The molecular structure of human tissue type XV presents a unique conformation among the collagens
Establishing the structure of the non-fibrillar collagens has provided a unique perspective to understanding their specialized functions in the extracellular matrix. These proteins exhibit very diverse conformations and supramolecular assemblies. Type XV collagen is a large macromolecule distinguished by a highly interrupted collagenous domain and many utilized sites of attachment for CS (chondroitin sulfate) and HS (heparan sulfate) glycosaminoglycan chains. It is present in most basement membrane zones of human tissues, where it is found closely associated with large collagen fibrils. To determine the molecular shape and organization of type XV, the protein was purified from human umbilical cords by salt extraction, and by ion-exchange and antibody-affinity chromatography. The representation of type XV in one of its most abundant tissue sources is estimated at only (1–2)×10−4% of dry weight. The molecules examined by transmission electron microscopy after rotary shadowing were visualized in multiple forms. Relatively few type XV monomers appeared elongated and kinked; most molecules were found in a knot/figure-of-eight/pretzel configuration not previously described for a collagen. Collective measurements of these populations revealed an average length of 193±16 nm. At the N-terminal end, identified by C-terminal antibody binding, were three 7.7 nm-diameter spheres, corresponding to TSPN-1 (N-terminal module of thrombospondin-1) modules, and attached to the collagen backbone by a short linker. The type XV monomers show the ability to self-assemble into higher-order structures. Some were arranged in complex clusters, but simpler oligomers, which may represent intermediates, were observed in a cruciform pattern with intermolecular binding sites that probably originate in the interruption sequences. The morphology of type XV is thus the antithesis of the fibrillar collagens, and the shape attains the required flexibility to form the spectrum of interconnecting links between banded fibrils at the basement membrane/interstitial border. These type XV structures may act as a biological ‘spring’ to stabilize and enhance resilience to compressive and expansive forces, and the multimers, in particular, with selective complements of many localized CS and HS chains, may be instrumental in spatial and temporal recruitment of modulators in growth, development and pathological processes