15 research outputs found
Constraints on the Obliquities of Kepler Planet-Hosting Stars
Stars with hot Jupiters have obliquities ranging from 0-180 degrees, but
relatively little is known about the obliquities of stars with smaller planets.
Using data from the California-Kepler Survey, we investigate the obliquities of
stars with planets spanning a wide range of sizes, most of which are smaller
than Neptune. First, we identify 156 planet hosts for which measurements of the
projected rotation velocity (vsini) and rotation period are both available. By
combining estimates of v and vsini, we find nearly all the stars to be
compatible with high inclination, and hence, low obliquity (less than about 20
degrees). Second, we focus on a sample of 159 hot stars (> 6000K) for which
vsini is available but not necessarily the rotation period. We find 6 stars for
which vsini is anomalously low, an indicator of high obliquity. Half of these
have hot Jupiters, even though only 3% of the stars that were searched have hot
Jupiters. We also compare the vsini distribution of the hot stars with planets
to that of 83 control stars selected without prior knowledge of planets. The
mean vsini of the control stars is lower than that of the planet hosts by a
factor of approximately pi/4, as one would expect if the planet hosts have low
obliquities. All these findings suggest that the Kepler planet-hosting stars
generally have low obliquities, with the exception of hot stars with hot
Jupiters.Comment: AJ, in pres
The Transiting Multi-planet System HD15337: Two Nearly Equal-mass Planets Straddling the Radius Gap
We report the discovery of a super-Earth and a sub-Neptune transiting the star HD 15337 (TOI-402, TIC 120896927), a bright (V = 9) K1 dwarf observed by the Transiting Exoplanet Survey Satellite (TESS) in Sectors 3 and 4. We combine the TESS photometry with archival High Accuracy Radial velocity Planet Searcher spectra to confirm the planetary nature of the transit signals and derive the masses of the two transiting planets. With an orbital period of 4.8 days, a mass of and a radius of 1.64 ± 0.06 R ⊕, HD 15337 b joins the growing group of short-period super-Earths known to have a rocky terrestrial composition. The sub-Neptune HD 15337 c has an orbital period of 17.2 days, a mass of , and a radius of 2.39 ± 0.12 R ⊕, suggesting that the planet might be surrounded by a thick atmospheric envelope. The two planets have similar masses and lie on opposite sides of the radius gap, and are thus an excellent testbed for planet formation and evolution theories. Assuming that HD 15337 c hosts a hydrogen-dominated envelope, we employ a recently developed planet atmospheric evolution algorithm in a Bayesian framework to estimate the history of the high-energy (extreme ultraviolet and X-ray) emission of the host star. We find that at an age of 150 Myr, the star possessed on average between 3.7 and 127 times the high-energy luminosity of the current Sun
The genetic architecture of type 2 diabetes
The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of heritability. To test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole genome sequencing in 2,657 Europeans with and without diabetes, and exome sequencing in a total of 12,940 subjects from five ancestral groups. To increase statistical power, we expanded sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support a major role for lower-frequency variants in predisposition to type 2 diabetes
Three Super-Earths Transiting the Nearby Star GJ 9827
We report on the discovery of three transiting planets around GJ. 9827. The planets have radii of 1.75 +/- 0.18, 1.36 +/- 0.14, and 2.11 (+0.22)(-0.21) R-circle plus, and periods of 1.20896, 3.6480, and 6.2014 days, respectively. The detection was made in Campaign 12 observations as part of our K2 survey of nearby stars. GJ 9827 is a V = 10.39 mag K6V star at a distance of 30.3 +/- 1.6 parsecs and the nearest star to be found hosting planets by Kepler and K2. The radial velocity follow- up, high- resolution imaging, and detection of multiple transiting objects near commensurability drastically reduce the false positive probability. The orbital periods of GJ 9827 b, c, and d planets are very close to the 1:3:5 mean motion resonance. Our preliminary analysis shows that GJ 9827 planets are excellent candidates for atmospheric observations. Besides, the planetary radii span both sides of the rocky and gaseous divide, hence the system will be an asset in expanding our understanding of the threshold
The Discovery and Mass Measurement of a New Ultra-short-period Planet: EPIC 228732031b
We report the discovery of a new ultra-short-period planet and summarize the properties of all such planets for which the mass and radius have been measured. The new planet, EPIC. 228732031b, was discovered in K2 Campaign 10. It has a radius of 1.81(-0.12)(+0.16) R-circle plus and orbits a G dwarf with a period of 8.9 hr. Radial velocities obtained with Magellan/PFS and TNG/HARPS-N show evidence for stellar activity along with orbital motion. We determined the planetary mass using two different methods: (1) the floating chunk offset method, based only on changes in velocity observed on the same night; and (2) a Gaussian process regression based on both the radial velocity and photometric time series. The results are consistent and lead to a mass measurement of 6.5. +/- 1.6 M-circle plus and a mean density of 6.0(-2.7)(+3.0) g cm(-3)
Identification of a Sjögren's syndrome susceptibility locus at OAS1 that influences isoform switching, protein expression, and responsiveness to type I interferons
Sjogren's syndrome (SS) is a common, autoimmune exocrinopathy distinguished by keratoconjunctivitis sicca and xerostomia. Patients frequently develop serious complications including lymphoma, pulmonary dysfunction, neuropathy, vasculitis, and debilitating fatigue. Dysregulation of type I interferon (IFN) pathway is a prominent feature of SS and is correlated with increased autoantibody titers and disease severity. To identify genetic determinants of IFN pathway dysregulation in SS, we performed cis-expression quantitative trait locus (eQTL) analyses focusing on differentially expressed type I IFN-inducible transcripts identified through a transcriptome profiling study. Multiple cis-eQTLs were associated with transcript levels of 2'-5'-oligoadenylate synthetase 1 (OAS1) peaking at rs10774671 (PeQTL = 6.05 x 10(-14)). Association of rs10774671 with SS susceptibility was identified and confirmed through meta-analysis of two independent cohorts (P-meta = 2.59 x 10(-9); odds ratio = 0.75; 95% confidence interval = 0.66-0.86). The risk allele of rs10774671 shifts splicing of OAS1 from production of the p46 isoform to multiple alternative transcripts, including p42, p48, and p44. We found that the isoforms were differentially expressed within each genotype in controls and patients with and without autoantibodies. Furthermore, our results showed that the three alternatively spliced isoforms lacked translational response to type I IFN stimulation. The p48 and p44 isoforms also had impaired protein expression governed by the 3' end of the transcripts. The SS risk allele of rs10774671 has been shown by others to be associated with reduced OAS1 enzymatic activity and ability to clear viral infections, as well as reduced responsiveness to IFN treatment. Our results establish OAS1 as a risk locus for SS and support a potential role for defective viral clearance due to altered IFN response as a genetic pathophysiological basis of this complex autoimmune disease