3 research outputs found

    Influence of bolus size and chewing side on temporomandibular joint intra-articular space during mastication

    Full text link
    Previous studies suggested that, during mastication, magnitude and location of mechanical load in the temporomandibular joint (TMJ) might depend on chewing side and bolus size. Aim of this study was to dynamically measure the TMJ space while chewing on standardized boluses to assess the relationship among minimum intra-articular distances (MID), their location on the condylar surface, bolus size, and chewing side. Mandibular movements of 12 participants (6f, 24±1y.o.; 6 m, 28±6y.o.) were tracked optoelectronically while chewing unilaterally on rubber boluses of 15 × 15 × 5, 15 × 15 × 10, and 15 × 15 × 15 mm3 size. MID and their location along the main condylar axis were determined with dynamic stereometry. MID were normalized on the intra-articular distance in centric occlusion. Repeated measures ANOVA (α = 0.05) showed that MID were smaller on the balancing (0.74±0.19) than on the working condyle (0.89±0.16) independently of bolus size (p < 0.0001). MIDs did not differ between 5 and 10 mm bolus thicknesses (0.80±0.17) but increased for 15 mm (0.85±0.22, p = 0.024) and were located mostly laterally, close to the condylar center. This study confirmed higher reduction of TMJ space on the balancing than on the working condyle during mastication. Intra-articular distances increased significantly for the greatest bolus thickness. Loaded areas were located laterally, for both working and balancing joint

    Incidental findings in cone beam computed tomography (CBCT) scans for implant treatment planning: a retrospective study of 404 CBCT scans.

    Get PDF
    OBJECTIVES To investigate the prevalence of incidental findings and need for further dental treatment and analyse the influence of size of field-of-view (FOV) and age in cone beam computed tomography (CBCT) for pre-implant planning. METHODS 404 CBCT scans were examined retrospectively for incidental findings and need for further dental treatment. Incidental finding-frequencies and need for further treatment were assessed for different age ( 60 years) and FOV groups (small, medium, large). Intraexaminer and interexaminer agreements were evaluated. RESULTS In 82% of the scans at least one incidental finding was found, with a total of 766 overall. More incidental findings were found in scans with large FOV (98% vs. 72%, OR = 22.39 large vs. small FOV, p  60 years (OR = 5.37 patient's age > 60 years vs. < 40 years, p = 0.0003). Further dental treatment due to incidental findings was needed in 31%. Scans with large FOV were more likely to entail further treatment (OR = 3.55 large vs. small FOV, p < 0.0001). Partial edentulism and large FOV were identified as risk factors for further treatment (p = 0.0003 and p < 0.0001). Further referral of the patient based on incidental findings was judged as indicated in 5%. Intra- and inter-examiner agreements were excellent (kappa = 0.944/0.805). CONCLUSIONS A considerable number of incidental findings with need for further dental treatment was found in partially edentulous patients and in patients > 60 years. In pre-implant planning of elderly patients, the selection of large FOV CBCT scans, including dentoalveolar regions not X-rayed recently, help to detect therapeutically relevant incidental findings

    Influence of bolus size and chewing side on temporomandibular joint intra-articular space during mastication

    Get PDF
    Previous studies suggested that, during mastication, magnitude and location of mechanical load in the temporomandibular joint (TMJ) might depend on chewing side and bolus size. Aim of this study was to dynamically measure the TMJ space while chewing on standardized boluses to assess the relationship among minimum intra-articular distances (MID), their location on the condylar surface, bolus size, and chewing side. Mandibular movements of 12 participants (6f, 24±1y.o.; 6 m, 28±6y.o.) were tracked optoelectronically while chewing unilaterally on rubber boluses of 15 × 15 × 5, 15 × 15 × 10, and 15 × 15 × 15 mm3 size. MID and their location along the main condylar axis were determined with dynamic stereometry. MID were normalized on the intra-articular distance in centric occlusion. Repeated measures ANOVA (α = 0.05) showed that MID were smaller on the balancing (0.74±0.19) than on the working condyle (0.89±0.16) independently of bolus size (p < 0.0001). MIDs did not differ between 5 and 10 mm bolus thicknesses (0.80±0.17) but increased for 15 mm (0.85±0.22, p = 0.024) and were located mostly laterally, close to the condylar center. This study confirmed higher reduction of TMJ space on the balancing than on the working condyle during mastication. Intra-articular distances increased significantly for the greatest bolus thickness. Loaded areas were located laterally, for both working and balancing joint
    corecore