17 research outputs found
Observational Learning of New Movement Sequences Is Reflected in Fronto-Parietal Coherence
Mankind is unique in her ability for observational learning, i.e. the transmission of acquired knowledge and behavioral repertoire through observation of others' actions. In the present study we used electrophysiological measures to investigate brain mechanisms of observational learning. Analysis investigated the possible functional coupling between occipital (alpha) and motor (mu) rhythms operating in the 10Hz frequency range for translating “seeing” into “doing”. Subjects observed movement sequences consisting of six consecutive left or right hand button presses directed at one of two target-buttons for subsequent imitation. Each movement sequence was presented four times, intervened by short pause intervals for sequence rehearsal. During a control task subjects observed the same movement sequences without a requirement for subsequent reproduction. Although both alpha and mu rhythms desynchronized during the imitation task relative to the control task, modulations in alpha and mu power were found to be largely independent from each other over time, arguing against a functional coupling of alpha and mu generators during observational learning. This independence was furthermore reflected in the absence of coherence between occipital and motor electrodes overlaying alpha and mu generators. Instead, coherence analysis revealed a pair of symmetric fronto-parietal networks, one over the left and one over the right hemisphere, reflecting stronger coherence during observation of movements than during pauses. Individual differences in fronto-parietal coherence were furthermore found to predict imitation accuracy. The properties of these networks, i.e. their fronto-parietal distribution, their ipsilateral organization and their sensitivity to the observation of movements, match closely with the known properties of the mirror neuron system (MNS) as studied in the macaque brain. These results indicate a functional dissociation between higher order areas for observational learning (i.e. parts of the MNS as reflected in 10Hz coherence measures) and peripheral structures (i.e. lateral occipital gyrus for alpha; central sulcus for mu) that provide low-level support for observation and motor imagery of action sequences
Object Based Attention in Illusory Figures: an Electrophysiological Investigation
De experimenten die in dit proefschrift beschreven staan hebben betrekking op visuele aandacht en de interactie van visuele aandacht met illusoire figuren in het bijzonder. Illusoire figuren zijn figuren die we waarnemen maar fysiek niet zo gepresenteerd zijn. Ik heb in de experimenten gebruik gemaakt van ‘Kanizsa-figuren’. Een typisch voorbeeld van zo’n figuur kan voorgesteld worden door vier pacmen (cirkels waaruit een kwart punt is verwijderd) zo tegenover elkaar te plaatsen dat ze ieder op een van de hoekpunten van een vierkant lijken te liggen. Meeste mensen nemen hierin een vierkant waar. Als ondersteunende meettechniek hebben we het ‘electro-encephalogram’ (EEG) gebruikt dat de hersenactiviteit weergeeft. Met deze methode kan waarneming van illusoire figuren in kaart worden gebracht, maar ook is het met deze techniek mogelijk invloeden van visuele aandacht vast te stellen.
Wat uit mijn onderzoek naar voren komt is dat de invloed van illusoire figuren op visuele aandacht lijken op hoe werkelijke figuren invloed hebben op visuele aandacht. Wanneer aandacht naar een bepaalde locatie is getrokken is men langzamer om een stimulus op te merken die zich op hetzelfde object bevindt dan een stimulus op te merken die zich op een ander object bevindt. Mensen lijken in eerste instantie hun aandacht over een object te verdelen voordat aandacht naar een ander object verschoven wordt. Hiervoor hebben we ondersteunende aanwijzingen gevonden in het EEG. In verschillende experiment bleek echter dat de herorientatie van aandacht niet vanzelf gebeurt, maar vrijwillig lijkt te zijn. Wanneer mensen zekerheid hadden over waar relevante zou worden getoond hadden figuren geen invloed
Effects on Alpha and Mu Power.
<p>(A) Alpha power (left) and mu power (right) during observation (O1, O2, O3, O4; black symbols) and pause (P1, P2, P3, P4; white symbols) intervals in the imitation task (squares) and the detection task (circles). Squares labelled with “Imitate” represent power levels during execution of the observed movement sequence. (B) Topographic representation of alpha power (left) maximal at bilateral parieto-occipital electrode sites, and mu power (right) overlying the left and right rolandic fissure. Alpha and mu topographies reflect the difference between pause and observation intervals in the detection task and the imitation task, respectively.</p
Interaction between Fronto-Parietal Coherence and Imitation Accuracy.
<p>(A) Median split between individuals with high accuracy (good imitators) and low accuracy (bad imitators). Values reflect the percentage of correctly imitated movement sequences. Error bars reflect the Standard Errors of Means. (B) Fronto-parietal coherence for good imitators (diamonds) and bad imitators (triangles) over time. Good imitators show stronger fronto-parietal coherence as compared to bad imitators. Squares labelled with “Imitate” represent coherence of bad and good imitators during execution of the observed movement sequence. (C) Pearson correlations between fronto-parietal coherence per sequence repetition (S1, S2, S3, S4) and interval (observation, pause) and imitation accuracy. The difference in performance between good and bad imitators is predicted by fronto-parietal coherence during the first sequence observation and the third pause interval for repetition. Significant correlations (p<.05) labelled with *.</p