10 research outputs found

    Three years of growth hormone treatment in young adults with Prader-Willi Syndrome previously treated with growth hormone in childhood: Effects on glucose homeostasis and metabolic syndrome

    Get PDF
    Context: Growth hormone (GH) has been approved for children with Prader-Willi syndrome (PWS) and significantly improves body composition in adults with PWS. Adults with PWS are predisposed to develop impaired glucose tolerance (IGT) and diabetes mellitus type 2 (DMT2). Continuation of GH maintains body composition, but GH is known to induce insulin resistance, which might affect glucose homeostasis. Studies on long-term effects of GH treatment in adults are very limited. Objective: To investigate effects of 3 years of GH treatment on glucose homeostasis and prevalence of metabolic syndrome (MS) in adults with PWS. Design: Open-label, prospective study. Patients: 43 young adults with PWS. Setting: Dutch PWS Reference Center. Main outcome measures: Glucose and insulin during oral glucose tolerance test. Results: Estimated mean (95% CI) fasting glucose and insulin levels remained stable during 3 years of GH treatment. Glucose being 4.6 (4.4-4.8) mmol/l at start and 4.7 (4.6-4.9) mmol/l after 3 years (P =.07); insulin being 59.5 (45.2-75.8) pmol/l and 56.7 (45.2-69.6) pmol/l resp. (P =.72). Sex, ethnicity and fat mass percentage were significantly associated with fasting glucose levels, while IGF-I or GH-dose were not. Blood pressure, lipids and prevalence of MS remained stable during 3 years of GH. IGT prevalence was variable over time, six patients had IGT at start and eleven after 3 years of GH. One patient developed DMT2. However, prevalence of IGT or DMT2 was not significantly higher after 3 years than at study start. Conclusions: Three years of GH treatment in adults with PWS does not impair glucose homeostasis and does not lead to an increased prevalence of DMT2

    Oxytocin in young children with Prader-Willi syndrome: Results of a randomized, double-blind, placebo-controlled, crossover trial investigating 3 months of oxytocin

    Get PDF
    Context: Prader-Willi syndrome (PWS) is characterized by hypothalamic dysfunction, hyperphagia and a typical behavioural phenotype, with characteristics of autism spectrum disorder (ASD) like stubbornness, temper tantrums and compulsivity. It has been suggested that the oxytocin system in patients with PWS is dysfunctional. In ASD, intranasal oxytocin treatment has favourable effects on behaviour. Objective: To evaluate the effects of 3 months of twice daily intranasal oxytocin (dose range 16-40 IU/day), compared to placebo, on behaviour and hyperphagia in children with PWS. Design: Randomized, double-blind, placebo-controlled, crossover study in the Dutch PWS Reference Center. Patients: Twenty-six children with PWS aged 3-11 years. Main outcome measures: (Change in) behaviour and hyperphagia measured by Oxytocin Questionnaire and Dykens hyperphagia questionnaire. Results: In the total group, no significant effects of oxytocin on social behaviour or hyperphagia were found. However, in boys, the Oxytocin Questionnaire scores improved significantly during oxytocin treatment, compared to a deterioration during placebo (4.5 (−0.8 to 15.3) vs. −4.0 (−11.3 to 0.8), P =.025). The Dykens hyperphagia questionnaire scores remain

    The Spectrum of the Prader-Willi-like Pheno- and Genotype: A Review of the Literature

    Get PDF
    Prader-Willi syndrome (PWS) is a rare genetic syndrome, caused by the loss of expression of the paternal chromosome 15q11-q13 region. Over the past years, many cases of patients with characteristics similar to PWS, but without a typical genetic aberration of the 15q11-q13 region, have been described. These patients are often labelled as Prader-Willi-like (PWL). PWL is an as-yet poorly defined syndrome, potentially affecting a significant number of children and adults. In the current clinical practice, patients labelled as PWL are mostly left without treatment options. Considering the similarities with PWS, children with PWL might benefit from the same care and treatment as children with PWS. This review gives more insight into the pheno- and genotype of PWL and includes 86 papers, containing 368 cases of patients with a PWL phenotype. We describe mutations and aberrations for consideration when suspicion of PWS remains after negative testing. The most common genetic diagnoses were Temple syndrome (formerly known as maternal uniparental disomy 14), Schaaf-Yang syndrome (truncating mutation in the MAGEL2 gene), 1p36 deletion, 2p deletion, 6q deletion, 6q duplication, 15q deletion, 15q duplication, 19p deletion, fragile X syndrome, and Xq duplication. We found that the most prevalent symptoms in the entire group were developmental delay/intellectual disability (76%), speech problems (64%), overweight/obesity (57%), hypotonia (56%), and psychobehavioral problems (53%). In addition, we propose a diagnostic approach to patients with a PWL phenotype for (pediatric) endocrinologists. PWL comprises a complex and diverse group of patients, which calls for multidisciplinary care with an individualized approach

    Atypical 15q11.2-q13 Deletions and the Prader-Willi Phenotype

    Get PDF
    Background: Prader-Willi syndrome (PWS) is a rare genetic disorder resulting from the lack of expression of the PWS region (locus q11-q13) on the paternally derived chromosome 15, as a result of a type I or II paternal deletion (50%), maternal uniparental disomy (43%), imprinting defect (4%) or translocation (<1%). In very rare cases, atypical deletions, smaller or larger than the typical deletion, are identified. These patients may have distinct phenotypical features and provide further information regarding the genotype–phenotype correlation in PWS. Methods: A prospective study in eight patients (six males and two females) with an atypical deletion in the PWS region accompanies an overview of reported cases. Results: All patients had hypotonia (100%) and many had typical PWS facial characteristics (75%), social and emotional developmental delays (75%), intellectual disabilities (50%), neonatal feeding problems and tube feeding (63%), history of obesity (50%), hyperphagia (50%) and scoliosis (50%). All males had cryptorchidism. Two patients had two separate deletions in the PWS critical region. Conclusions: Our findings provide further insight into PWS genotype–phenotype correlations; our results imply that inclusion of both SNURF-SNPRN and SNORD-116 genes in the deletion leads to a more complete PWS phenotype. A larger deletion, extending further upstream and downstream from these genes, does not cause a more severe phenotype. Conventional PWS methylation testing may miss small deletions, which can be identified using targeted next generation sequencing. PWS’s phenotypic diversity might be caused by differentially methylated regions outside the 15q11.2 locus

    Acute stress response of the HPA-axis in children with Prader-Willi syndrome: new insights and consequences for clinical practice

    Get PDF
    Background: Prader-Willi syndrome (PWS) is associated with hypothalamic dysfunction. It has been reported that the HPA axis might show a delayed response during acute stress, and it is unknown whether the response of the HPA-axis during acute stress changes with age in children with PWS. Aim: To investigate the HPA-axis response during an overnight single-dose metyrapone (MTP) test in children with PWS and to assess if the response changes with age, whether it is delayed and if it changes with repeated testing over time. In addition, we evaluated different cut-off points of ACTH and 11-DOC levels to assess stress-related central adrenal insufficiency (CAI). Methods: An overnight single-dose MTP test was performed in 93 children with PWS. Over time, 30 children had a second test and 11 children a third one. Children were divided into age groups (0-2 years, 2-4 years, 4-8 years and > 8 years). Results: Most children did not have their lowest cortisol level at 7.30h, but at 04.00h. Their ACTH and 11-DOC peaks appeared several hours later, suggesting a delayed response. When evaluated according to a subnormal ACTH peak (13-33 pmol/L) more children had an subnormal response compared to evaluation based on a subnormal 11-doc peak (< 200 nmol/L). The percentage of children with a subnormal ACTH response ranged from 22.2 to 70.0% between the age groups, while the percentage of a subnormal 11-DOC response ranged from 7.7 to 20.6%. When using the ACTH peak for diagnosing acute-stress-related CAI, differences between age groups and with repeated testing over time were found, whereas there was no age difference when using the 11-DOC peak. Conclusion: Early morning ACTH or 11-DOC levels are not appropriate to determine acute stress-related CAI in children with PWS, thus multiple measurements throughout the night are needed for an accurate interpretation. Our data suggest a delayed response of the HPA-axis during acute stress. Using the 11-DOC peak for the test interpretation is less age-dependent than the ACTH peak. Repeated testing of the HPA-axis over time is not required, unless clinically indicated

    Cognitive function during 3 years of growth hormone in previously growth hormone-treated young adults with Prader-Willi syndrome

    No full text
    CONTEXT: Most patients with Prader-Willi syndrome (PWS) have mild to moderate cognitive impairment. Growth hormone (GH) treatment has positive short- and long-term effects on cognition in children with PWS. Few studies, however, have investigated the effects of GH on cognitive functioning in adults with PWS. OBJECTIVE: To investigate the effects of 3 years of GH treatment on cognitive functioning and behavior in young adults with PWS who were treated with GH during childhood. DESIGN: Open-label, prospective study. SETTING: Dutch PWS Reference Center. METHODS: Patients were treated with 0.33 mg GH/m²/day (∼0.012 mg/kg/day; 33% of childhood dose). Cognitive functioning was measured by Wechsler Adult Intelligence (WAIS) tests. Behavior was studied by a developmental behavior checklist-parents/caregivers (DBC-P). RESULTS: Forty-six young adults with PWS with a median age of 19 (IQR 17-21) years were investigated. Estimated mean (95% CI) total, verbal, and performance IQ remained stable during 3 years of GH-treatment. Total IQ being 66 (63-69) at the start and 67 (64-71) after 3 years (P = .30); Verbal IQ being 65 (62-68) and 66 (62-70), respectively (P = .31) and performance IQ being 67 (63-70) and 67 (63-72) resp. (P = .42). Estimated mean Total DBC score did not significantly change during 3 years of GH-treatment, being 36.3 at start and 36.5 after 3 years (P = .94) (P50). CONCLUSIONS: Three years of GH-treatment in young adults with PWS with 33% of the pediatric dose, maintains total, verbal, and performance IQ. The emotional and behavioral disturbances remained stable and were similar compared to peers with other intellectual disabilities.</p

    Oxytocin in young children with Prader-Willi syndrome: Results of a randomized, double-blind, placebo-controlled, crossover trial investigating 3 months of oxytocin

    Get PDF
    Context: Prader-Willi syndrome (PWS) is characterized by hypothalamic dysfunction, hyperphagia and a typical behavioural phenotype, with characteristics of autism spectrum disorder (ASD) like stubbornness, temper tantrums and compulsivity. It has been suggested that the oxytocin system in patients with PWS is dysfunctional. In ASD, intranasal oxytocin treatment has favourable effects on behaviour. Objective: To evaluate the effects of 3 months of twice daily intranasal oxytocin (dose range 16-40 IU/day), compared to placebo, on behaviour and hyperphagia in children with PWS. Design: Randomized, double-blind, placebo-controlled, crossover study in the Dutch PWS Reference Center. Patients: Twenty-six children with PWS aged 3-11 years. Main outcome measures: (Change in) behaviour and hyperphagia measured by Oxytocin Questionnaire and Dykens hyperphagia questionnaire. Results: In the total group, no significant effects of oxytocin on social behaviour or hyperphagia were found. However, in boys, the Oxytocin Questionnaire scores improved significantly during oxytocin treatment, compared to a deterioration during placebo (4.5 (−0.8 to 15.3) vs. −4.0 (−11.3 to 0.8), P =.025). The Dykens hyperphagia questionnaire scores remained similar during oxytocin treatment, while there was a deterioration during placebo (0.0 (−0.8 to 4.3) vs. −3.5 (−6.0 to 0.0), P =.046). Patients with a deletion had significant improvements in both questionnaire scores during oxytocin treatment, but deteriorations during placebo. Oxytocin treatment was well tolerated, and there were no serious adverse events. Conclusions: Intranasal oxytocin treatment has positive effects on social and eating behaviour in 3-11 years aged boys with PWS and in children with a deletion without safety concerns. Intranasal oxytocin in children with PWS might be considered, but individual effects should be carefully evaluated and treatment discontinued if no effects are found

    Temple Syndrome: Clinical Findings, Body Composition and Cognition in 15 Patients

    Get PDF
    Background: Temple syndrome (TS14) is an imprinting disorder caused by a maternal uniparental disomy of chromosome 14 (UPD(14)mat), paternal deletion of 14q32 or an isolated methylation defect of the MEG3-DMR. Studies on phenotypical characteristics in TS14 are scarce and patients with TS14 often experience delay in diagnosis, which has adverse effects on their health. TS14 is often characterized as either Prader&ndash;Willi-like, Silver&ndash;Russell-like or as a Silver&ndash;Russell spectrum disorder. Methods: This study describes 15 patients with TS14 who visited the Dutch Reference Center for Prader&ndash;Willi-like from December 2018 to January 2022. Results: Eight patients had UPD(14)mat and seven a methylation defect. The most common symptoms were intra-uterine growth retardation (IUGR) (100%), hypotonia (100%), precocious puberty (89%), small for gestational age (SGA) birth (67%), tube feeding after birth (53%) and psycho-behavioral problems (53%). Median (interquartile range (IQR)) IQ was 91.5 (84.25; 100.0), whilst many patients were enrolled in special education (54%). The median (IQR) fat mass % (FM%) SDS was 2.53 (2.26; 2.90) and lean body mass (LBM) SDS &minus;2.03 (&minus;3.22; &minus;1.28). There were no significant differences in clinical characteristics between patients with a UPD(14)mat and a methylation defect. Conclusions: Our patients share a distinct phenotype consisting of IUGR, SGA birth, precocious puberty, hypotonia, tube feeding after birth, psycho-behavioral problems and abnormal body composition with a high FM% and low LBM. Whilst similarities with Prader&ndash;Willi syndrome (PWS) and Silver&ndash;Russell syndrome (SRS) exist, TS14 is a discernible syndrome, deserving a tailored clinical approach. Testing for TS14 should be considered in patients with a PWS or SRS phenotype in infancy if PWS/SRS testing is negative

    The Effects of 5 Years of Growth Hormone Treatment on Growth and Body Composition in Patients with Temple Syndrome

    No full text
    INTRODUCTION: Temple syndrome (TS14) is a rare imprinting disorder caused by maternal uniparental disomy of chromosome 14, paternal deletion of 14q32.2, or an isolated methylation defect. Most patients with TS14 develop precocious puberty. Some patients with TS14 are treated with growth hormone (GH). However, evidence for the effectiveness of GH treatment in patients with TS14 is limited. METHODS: This study describes the effect of GH treatment in 13 children and provides a subgroup analysis of 5 prepubertal children with TS14. We studied height, weight, body composition by dual-energy X-ray absorptiometry, resting energy expenditure (REE), and laboratory parameters during 5 years of GH treatment. RESULTS:In the entire group, mean (95% CI) height SDS increased significantly during 5 years of GH treatment from -1.78 (-2.52; -1.04) to 0.11 (-0.66; 0.87). Fat mass percentage SDS decreased significantly during the first year of GH, and lean body mass (LBM) SDS and LBM index increased significantly during 5 years of treatment. IGF-1 and IGF-BP3 levels rose rapidly during GH treatment, and the IGF-1/IGF-BP3 molar ratio remained relatively low. Thyroid hormone levels, fasting serum glucose, and insulin levels remained normal. In the prepubertal group, median (interquartile range [IQR]) height SDS, LBM SDS, and LBM index also increased. REE was normal at start and did not change during 1 year of treatment. Five patients reached adult height and their median (IQR) height SDS was 0.67 (-1.83; -0.01). CONCLUSION: GH treatment in patients with TS14 normalizes height SDS and improves body composition. There were no adverse effects or safety concerns during GH treatment.</p
    corecore