7 research outputs found

    Fungal biodiversity in extreme environments and wood degradation potential

    Get PDF
    This doctoral thesis reports results from a multidisciplinary investigation of fungi from extreme locations, focusing on one of the driest and thermally broad regions of the world, the Taklimakan Desert, with comparisons to polar region deserts. Additionally, the capability of select fungal isolates to decay lignocellulosic substrates and produce degradative related enzymes at various temperatures was demonstrated. The Taklimakan Desert is located in the western portion of the People's Republic of China, a region of extremes dominated by both limited precipitation, less than 25 mm of rain annually and tremendous temperature variation. The organisms that inhabit this region are required to function in conditions that preclude most forms of life. Fungi are particularly interesting organisms for consideration of life in extreme environments since they absorb nutrients from their surroundings with diffusion taking place through the cell wall and plasma membrane requiring free water. The regions near the poles are another example of areas with extreme environmental conditions, with the north and south polar regions having similarities and differences to each other and to the Taklimakan Desert. All three regions experiences extreme cold but only the Taklimakan Desert has exceedingly warm temperatures. The Taklimakan Desert is diurnal and the polar regions have long periods of light and dark in summer and winter months, respectively. The annual precipitation in the specific polar sites is between 100-200 mm, 5-20 fold more than the Taklimakan Desert. From soil, rock and wood collected in the Taklimakan Desert, 194 independent fungal isolates were generated and identified based on extracted DNA and analysis of the internal transcribed spacer (ITS) region of the rDNA. Dominant taxa were from closely related Thielavia, Embellisia and Alternaria genera. Total DNA extracted directly from environmental samples and subjected to molecular fingerprinting identified 51 consensus sequences almost entirely of taxa not represented by culturing, with the dominant taxa in the Penicillium and Colletotrichum genera. The sequence data from the Taklimakan Desert cultured fungi were phylogenetically investigated by means of neighbor-joining analysis and compared to fungal sequences derived from various substrates collected at sites in Antarctica and the Arctic with wood as the common substrate from which isolates were obtained among all three locations. Based on comparisons of consensus sequences to the polar fungi and fungal databases, 72 isolates appear to represent novel taxa that may be endemic to the Taklimakan Desert and warrant further investigation. Selected fungal isolates from the Taklimakan Desert, Arctic and Antarctic research were investigated to determine and compare their ability to degrade two types of lignocellulose substrates, Pinus resinosa and Populus tremuloides, the latter being a genera of tree identified in some locations of the Taklimakan Desert and the former as a model softwood example. Fungi from all regions were able to degrade these substrates to varying degrees though minimal weight loss was common. These isolates did not produce cellulase or lignin peroxidase concurrent to the temperatures prevalent in the regions from which they were collected, posing interesting possibilities for their wood degradation pathways

    Environmental pollutants from the Scott and Shackleton expeditions during the ‘Heroic Age’ of Antarctic exploration

    Get PDF
    Early explorers to Antarctica built wooden huts and brought huge quantities of supplies and equipment to support their geographical and scientific studies for several years. When the expeditions ended and relief ships arrived, a rapid exodus frequently allowed only essential items to be taken north. The huts and thousands of items were left behind. Fuel depots with unused containers of petroleum products, asbestos materials, and diverse chemicals were also left at the huts. This investigation found high concentrations of polyaromatic hydrocarbons in soils under and around the historic fuel depots, including anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, chrysene, fluorene, and pyrene, as well as benzo[a]anthracene, benzo[a]pyrene, and fluoranthene, which are recognized carcinogens. Asbestos materials within the huts have been identified and extensive amounts of fragmented asbestos were found littering the ground around the Cape Evans hut. These materials are continually abraded and fragmented as tourists walk over them and the coarse scoria breaks and grinds down the materials. A chemical spill, within the Cape Evans hut, apparently from caustic substances from one of the scientific experiments, has caused an unusual deterioration and defibration on affected woods. Although these areas are important historic sites protected by international treaties, the hazardous waste materials left by the early explorers should be removed and remedial action taken to restore the site to as pristine a condition as possible. Recommendations are discussed for international efforts to study and clean up these areas, where the earliest environmental pollution in Antarctica was produced

    Screening fungi isolated from historic Discovery Hut on Ross Island, Antarctica for cellulose degradation

    Get PDF
    To survive in Antarctica, early explorers of Antarctica's Heroic Age erected wooden buildings and brought in large quantities of supplies. The introduction of wood and other organic materials may have provided new nutrient sources for fungi that were indigenous to Antarctica or were brought in with the materials. From 30 samples taken from Discovery Hut, 156 filamentous fungi were isolated on selective media. Of these, 108 were screened for hydrolytic activity on carboxymethyl cellulose, of which 29 demonstrated activities. Endo-1, 4-β-glucanase activity was confirmed in the extracellular supernatant from seven isolates when grown at 4°C, and also when they were grown at 15°C. Cladosporium oxysporum and Geomyces sp. were shown to grow on a variety of synthetic cellulose substrates and to use cellulose as a nutrient source at temperate and cold temperatures. The research findings from the present study demonstrate that Antarctic filamentous fungi isolated from a variety of substrates (wood, straw, and food stuffs) are capable of cellulose degradation and can grow well at low temperatures

    Monitoring and identification of airborne fungi at historic locations on Ross Island, Antarctica

    Get PDF
    Air sampling in the ‘Heroic Era’ historic huts on Ross Island, Antarctica confirmed fungal presence, viability and winter survival. Cultivation and consensus sequence-based identification of Cladosporium cladosporioides, Pseudeurotium desertorum, Geomyces sp. and Antarctomyces psychrotrophicus demonstrated that they dominated the air environment within the huts. Cadophora sp. and Thebolus sp. were also isolated from the air and identified by morphological characteristics. Viable fungal colony forming units generally dropped in winter 2007 samplings from levels recorded in summer 2006 but were still substantial and greater than observed in summer 2008 and summer 2009 sampling at some locations. Comparing interior to exterior sampling, at the Hut Point and Cape Evans sites, there were more fungi recovered from the air in the interiors but at Cape Royds location, more fungi were recovered from the outside environment, possibly due to the impact of large amounts of organic material from the nearby Adélie penguin rookery. This research reveals airborne fungal biodiversity in summer and winter and demonstrates spores are widespread particularly in the interiors of the huts. Completed conservation efforts appear to have reduced fungal blooms and spores, which should reduce future adverse impacts to wood, textiles, paper and other artefacts so that this important polar heritage can be preserved

    Highly specialized microbial diversity in hyper-arid polar desert

    No full text
    The McMurdo Dry Valleys in Antarctica are a cold hyperarid polar desert that present extreme challenges to life. Here, we report a culture-independent survey of multidomain microbial biodiversity in McKelvey Valley, a pristine example of the coldest desert on Earth. We demonstrate that life has adapted to form highly-specialized communities in distinct lithic niches occurring concomitantly within this terrain. Endoliths and chasmoliths in sandstone displayed greatest diversity, whereas soil was relatively depauperate and lacked a significant photoautotrophic component, apart from isolated islands of hypolithic cyanobacterial colonization on quartz rocks in soil contact. Communities supported previously unreported polar bacteria and fungi, but archaea were absent from all niches. Lithic community structure did not vary significantly on a landscape scale and stochastic moisture input due to snowmelt resulted in increases in colonization frequency without significantly affecting diversity. The findings show that biodiversity near the cold-arid limit for life is more complex than previously appreciated, but communities lack variability probably due to the high selective pressures of this extreme environment

    Introduced and indigenous fungi of the Ross Island historic huts and pristine areas of

    No full text
    This review summarizes research concerning Antarctic fungi at the century-old historic huts of the Heroic Period of exploration in the Ross Dependency 1898–1917 and fungi in pristine terrestrial locations. The motivation of the research was initially to identify potential fungal causes of degradation of the historic huts and artifacts. The research was extended to study fungal presence at pristine sites for comparison purposes and to consider the role of fungi in the respective ecosystems. We employed classical microbiology for isolation of viable organisms, and culture independent DNA analyses. The research provided baseline data on microbial biodiversity. Principal findings were that there is significant overlap of the yeasts and filamentous fungi isolated from the historic sites, soil, and historic introduced materials (i.e., wood, foodstuffs) and isolated from environmental samples in pristine locations. Aerial spore monitoring confirmed that winter spore counts were high and, in some cases, similar to those found in summer. Microbial diversity varied between the three Ross Island historic sites, and one historic site showed noticeably higher diversity, which led to the conclusion that this is a variable that should not be generalized. Cultured fungi were cold active, and the broader scientific significance of this finding was that climate change (warming) may not adversely affect these fungal species unless they were out-competed by new arrivals or unfavorable changes in ecosystem domination occur

    An Antarctic hot spot for Fungi at Shackleton's Historic Hut on Cape Royds

    No full text
    The historic expedition huts located in the Ross Sea Region of the Antarctic and the thousands of artifacts left behind by the early explorers represent important cultural heritage from the “Heroic Era” of Polar exploration. The hut at Cape Royds built by Ernest Shackleton and members of the 1907–1908 British Antarctic Expedition has survived the extreme Antarctic environment for over 100 years, but recent studies have shown many forms of deterioration are causing serious problems, and microbial degradation is evident in the historic wood. Conservation work to reduce moisture at the hut required removal of fodder, wood, and many different types of organic materials from the stables area on the north side of the structure allowing large numbers of samples to be obtained for these investigations. In addition, wood from historic food storage boxes exposed in a ravine adjacent to the hut were also sampled. Fungi were cultured on several different media, and pure cultures were obtained and identified by sequencing of the internal transcribed spacer region of rDNA. From the 69 cultures of filamentous fungi obtained, the most predominant genera were Cadophora (44%) followed by Thielavia (17%) and Geomyces (15%). Other fungi found included Cladosporium, Chaetomium, and isolates identified as being in Pezizomycotina, Onygenales, Nectriaceae, and others. No filamentous basidiomycetes were found. Phylogenetic analyses of the Cadophora species showed great species diversity present revealing Cadophora malorum, Cadophora luteo-olivacea, Cadophora fastigiata, as well as Cadophora sp. 4E71-1, a C. malorum-like species, and Cadophora sp. 7R16-1, a C. fastigiata-like species. Scanning electron microscopy showed extensive decay was present in the wood samples with type 1 and type 2 forms of soft rot evident in pine and birch wood, respectively. Fungi causing decay in the historic wooden structures and artifacts are of great concern, and this investigation provides insight into the identity and species diversity of fungi found at the site. The historic woods and other organic materials at this site represent a large input of carbon into the Antarctic environment. This as well as nutrient additions from the nearby Adélie penguin (Pygoscelis adeliae) colony and favorable conditions for fungal growth at Cape Royds appear responsible for the significant fungal diversity, and where extensive decay is taking place in wood in contact with the ground
    corecore