13 research outputs found
Recommended from our members
Wind-driven mixing causes a reduction in the strength of the continental shelf carbon pump in the Chukchi Sea
The Chukchi Sea is thought to be a globally important sink of atmospheric CO2 due to the summertime drawdown of surface pCO2 by phytoplankton and subsequent shelf-to-basin transport of CO2-enriched subsurface waters into the upper halocline of the Arctic Ocean. Here we show that annually occurring storm-induced mixing events during autumn months disrupt water column stratification and stir up remineralized carbon from subsurface waters to the surface, leading to CO2 outgassing to the atmosphere. Our analysis provides a new understanding of the dynamics of carbon cycling in the region and suggests that late season wind events are strong and frequent enough to significantly decrease the carbon sink strength of the Chukchi Sea on a scale of relevance to the global carbon cycle. These results highlight the importance of obtaining data with more complete seasonal and spatial coverage in order to accurately constrain regional to basin-scale carbon flux budgets
Review of US GO-SHIP (Global Oceans Shipboard Hydrographic Investigations Program) An OCB and US CLIVAR Report
The following document constitutes a review of the US GO-SHIP program, performed under the auspices of US Climate Variability and Predictability (CLIVAR) and Ocean Carbon Biogeochemistry (OCB) Programs. It is the product of an external review committee, charged and assembled by US CLIVAR and OCB with members who represent the interests of the programs and who are independent of US GO-SHIP support, which spent several months gathering input and drafting this report. The purpose of the review is to assess program planning, progress, and opportunities in collecting, providing, and synthesizing high quality hydrographic data to advance the scientific research goals of US CLIVAR and OCB
Significant biologically mediated CO2 uptake in the pacific arctic during the late open water season.
Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(2), (2019):821-843, doi:10.1029/2018JC014568.Shifting baselines in the Arctic atmosphere‐sea ice‐ocean system have significant potential to alter biogeochemical cycling and ecosystem dynamics. In particular, the impact of increased open water duration on lower trophic level productivity and biological CO2 sequestration is poorly understood. Using high‐resolution observations of surface seawater dissolved O2/Ar and pCO2 collected in the Pacific Arctic in October 2011 and 2012, we evaluate spatial variability in biological metabolic status (autotrophy vs heterotrophy) as constrained by O2/Ar saturation (∆O2/Ar) as well as the relationship between net biological production and the sea‐air gradient of pCO2 (∆pCO2). We find a robust relationship between ∆pCO2 and ∆O2/Ar (correlation coefficient of −0.74 and −0.61 for 2011 and 2012, respectively), which suggests that biological production in the late open water season is an important determinant of the air‐sea CO2 gradient at a timeframe of maximal ocean uptake for CO2 in this region. Patchiness in biological production as indicated by ∆O2/Ar suggests spatially variable nutrient supply mechanisms supporting late season growth amidst a generally strongly stratified and nutrient‐limited condition.We thank the Captain, crew, and marine technicians of the USCGC Healy for their shipboard support. We also thank anonymous reviewers for providing useful feedback that improved this manuscript. This work was supported by NSF awards 1232856 and 1504394 to L.W.J. T.T. was supported by a grant NA150AR4320064 from Climate Program Office/NOAA and R.P. by NSF PLR‐1504333 and OPP‐1702371. All O2 and O2/Ar data and metadata are available at Arcticdata.io, doi:10.18739/A21G22, and pCO2 data are available at www.ldeo.columbia.edu/CO2 as well as from the NOAA National Centers for Environmental Information Ocean Carbon Data System at https://www.nodc.noaa.gov/ocads/.2019-07-1
The Atlantic Water boundary current in the Chukchi Borderland and Southern Canada Basin
Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(8), (2020): e2020JC016197, doi:10.1029/2020JC016197.Synoptic shipboard measurements, together with historical hydrographic data and satellite data, are used to elucidate the detailed structure of the Atlantic Water (AW) boundary current system in the southern Canada Basin and its connection to the upstream source of AW in the Chukchi Borderland. Nine high‐resolution occupations of a transect extending from the Beaufort shelf to the deep basin near 152°W, taken between 2003 and 2018, reveal that there are two branches of the AW boundary current that flow beneath and counter to the Beaufort Gyre. Each branch corresponds to a warm temperature core and transports comparable amounts of Fram Strait Branch Water between roughly 200–700 m depth, although they are characterized by a different temperature/salinity (T/S) structure. The mean volume flux of the combined branches is 0.87 ± 0.13 Sv. Using the historical hydrographic data, the two branches are tracked upstream by their temperature cores and T/S signatures. This sheds new light on how the AW negotiates the Chukchi Borderland and why two branches emerge from this region. Lastly, the propagation of warm temperature anomalies through the region is quantified and shown to be consistent with the deduced circulation scheme.This work was funded by the following sources: National Science Foundation Grants PLR‐1504333, OPP‐1733564, and OPP‐1504394; National Oceanic and Atmospheric Administration Grant NA14OAR4320158; and National Aeronautics and Space Administration Grant NNX10AF42G.2021-01-2
Recommended from our members
Wind-driven mixing causes a reduction in the strength of the continental shelf carbon pump in the Chukchi Sea
The Chukchi Sea is thought to be a globally important sink of atmospheric CO₂ due to the summertime drawdown of surface pCO₂ by phytoplankton and subsequent shelf-to-basin transport of CO₂-enriched subsurface waters into the upper halocline of the Arctic Ocean. Here we show that annually occurring storm-induced mixing events during autumn months disrupt water column stratification and stir up remineralized carbon from subsurface waters to the surface, leading to CO₂ outgassing to the atmosphere. Our analysis provides a new understanding of the dynamics of carbon cycling in the region and suggests that late season wind events are strong and frequent enough to significantly decrease the carbon sink strength of the Chukchi Sea on a scale of relevance to the global carbon cycle. These results highlight the importance of obtaining data with more complete seasonal and spatial coverage in order to accurately constrain regional to basin-scale carbon flux budgets.Keywords: CO₂ flux, Vertical mixing, Remineralization, Chukchi Sea, Carbon dioxid
Storm-induced upwelling of high pCO2 waters onto the continental shelf of the western Arctic Ocean and implications for carbonate mineral saturation states
Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 39 (2012): L07606, doi:10.1029/2012GL051574.The carbon system of the western Arctic Ocean is undergoing a rapid transition as sea ice extent and thickness decline. These processes are dynamically forcing the region, with unknown consequences for CO2 fluxes and carbonate mineral saturation states, particularly in the coastal regions where sensitive ecosystems are already under threat from multiple stressors. In October 2011, persistent wind-driven upwelling occurred in open water along the continental shelf of the Beaufort Sea in the western Arctic Ocean. During this time, cold (32.4) halocline water—supersaturated with respect to atmospheric CO2 (pCO2 > 550 μatm) and undersaturated in aragonite (Ωaragonite < 1.0) was transported onto the Beaufort shelf. A single 10-day event led to the outgassing of 0.18–0.54 Tg-C and caused aragonite undersaturations throughout the water column over the shelf. If we assume a conservative estimate of four such upwelling events each year, then the annual flux to the atmosphere would be 0.72–2.16 Tg-C, which is approximately the total annual sink of CO2 in the Beaufort Sea from primary production. Although a natural process, these upwelling events have likely been exacerbated in recent years by declining sea ice cover and changing atmospheric conditions in the region, and could have significant impacts on regional carbon budgets. As sea ice retreat continues and storms increase in frequency and intensity, further outgassing events and the expansion of waters that are undersaturated in carbonate minerals over the shelf are probable.Funding for this work was provided by the National Science
Foundation (ARC1041102 – JTM, OPP0856244-RSP, and ARC1040694-
LWJ), the National Oceanic and Atmospheric Administration (CIFAR11021-
RHB) and the West Coast & Polar Regions Undersea Research Center
(POFP00983 – CLM and JM).2012-10-1
Short-term variability in euphotic zone biogeochemistry and primary productivity at Station ALOHA : a case study of summer 2012
Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 29 (2015): 1145–1164, doi:10.1002/2015GB005141.Time-series observations are critical to understand the structure, function, and dynamics of marine ecosystems. The Hawaii Ocean Time-series program has maintained near-monthly sampling at Station ALOHA (22°45′N, 158°00′W) in the oligotrophic North Pacific Subtropical Gyre (NPSG) since 1988 and has identified ecosystem variability over seasonal to interannual timescales. To further extend the temporal resolution of these near-monthly time-series observations, an extensive field campaign was conducted during July–September 2012 at Station ALOHA with near-daily sampling of upper water-column biogeochemistry, phytoplankton abundance, and activity. The resulting data set provided biogeochemical measurements at high temporal resolution and documents two important events at Station ALOHA: (1) a prolonged period of low productivity when net community production in the mixed layer shifted to a net heterotrophic state and (2) detection of a distinct sea-surface salinity minimum feature which was prominent in the upper water column (0–50 m) for a period of approximately 30 days. The shipboard observations during July–September 2012 were supplemented with in situ measurements provided by Seagliders, profiling floats, and remote satellite observations that together revealed the extent of the low productivity and the sea-surface salinity minimum feature in the NPSG.NOAA Climate Observation Division; National Science Foundation (NSF) Center for Microbial Oceanography: Research and Education (C-MORE) Grant Numbers: EF0424599, OCE-1153656, OCE-1260164; Gordon and Betty Moore Foundation Marine Microbiology Investigator2016-02-1
Recommended from our members
Short-term variability in euphotic zone biogeochemistry and primary productivity at Station ALOHA: A case study of summer 2012
Time-series observations are critical to understand the structure, function, and dynamics of marine ecosystems. The Hawaii Ocean Time-series program has maintained near-monthly sampling at Station ALOHA (22°45′N, 158°00′W) in the oligotrophic North Pacific Subtropical Gyre (NPSG) since 1988 and has identified ecosystem variability over seasonal to interannual timescales. To further extend the temporal resolution of these near-monthly time-series observations, an extensive field campaign was conducted during July–September 2012 at Station ALOHA with near-daily sampling of upper water-column biogeochemistry, phytoplankton abundance, and activity. The resulting data set provided biogeochemical measurements at high temporal resolution and documents two important events at Station ALOHA: (1) a prolonged period of low productivity when net community production in the mixed layer shifted to a net heterotrophic state and (2) detection of a distinct sea-surface salinity minimum feature which was prominent in the upper water column (0–50 m) for a period of approximately 30 days. The shipboard observations during July–September 2012 were supplemented with in situ measurements provided by Seagliders, profiling floats, and remote satellite observations that together revealed the extent of the low productivity and the sea-surface salinity minimum feature in the NPSG.This is the publisher’s final pdf. The article is copyrighted by American Geophysical Union and published by John Wiley & Sons, Inc. It can be found at: http://agupubs.onlinelibrary.wiley.com/agu/journal/10.1002/%28ISSN%291944-9224
Recommended from our members
Juranek LaurieCEOASShortTermVariabilitySupplement.pdf
Time-series observations are critical to understand the structure, function, and dynamics of marine ecosystems. The Hawaii Ocean Time-series program has maintained near-monthly sampling at Station ALOHA (22°45′N, 158°00′W) in the oligotrophic North Pacific Subtropical Gyre (NPSG) since 1988 and has identified ecosystem variability over seasonal to interannual timescales. To further extend the temporal resolution of these near-monthly time-series observations, an extensive field campaign was conducted during July–September 2012 at Station ALOHA with near-daily sampling of upper water-column biogeochemistry, phytoplankton abundance, and activity. The resulting data set provided biogeochemical measurements at high temporal resolution and documents two important events at Station ALOHA: (1) a prolonged period of low productivity when net community production in the mixed layer shifted to a net heterotrophic state and (2) detection of a distinct sea-surface salinity minimum feature which was prominent in the upper water column (0–50 m) for a period of approximately 30 days. The shipboard observations during July–September 2012 were supplemented with in situ measurements provided by Seagliders, profiling floats, and remote satellite observations that together revealed the extent of the low productivity and the sea-surface salinity minimum feature in the NPSG
Recommended from our members
Juranek LaurieCEOASShortTermVariability.pdf
Time-series observations are critical to understand the structure, function, and dynamics of marine ecosystems. The Hawaii Ocean Time-series program has maintained near-monthly sampling at Station ALOHA (22°45′N, 158°00′W) in the oligotrophic North Pacific Subtropical Gyre (NPSG) since 1988 and has identified ecosystem variability over seasonal to interannual timescales. To further extend the temporal resolution of these near-monthly time-series observations, an extensive field campaign was conducted during July–September 2012 at Station ALOHA with near-daily sampling of upper water-column biogeochemistry, phytoplankton abundance, and activity. The resulting data set provided biogeochemical measurements at high temporal resolution and documents two important events at Station ALOHA: (1) a prolonged period of low productivity when net community production in the mixed layer shifted to a net heterotrophic state and (2) detection of a distinct sea-surface salinity minimum feature which was prominent in the upper water column (0–50 m) for a period of approximately 30 days. The shipboard observations during July–September 2012 were supplemented with in situ measurements provided by Seagliders, profiling floats, and remote satellite observations that together revealed the extent of the low productivity and the sea-surface salinity minimum feature in the NPSG