2 research outputs found

    Consolidation in older adults depends upon competition between resting-state networks

    No full text
    Memory encoding and retrieval problems are inherent to aging. To date, however, the effect of aging upon the neural correlates of forming memory traces remains poorly understood. Resting-state fMRI connectivity can be used to investigate initial consolidation. We compared within and between network connectivity differences between healthy young and older participants before encoding, after encoding and before retrieval by means of resting-state fMRI. Alterations over time in the between-network connectivity analyses correlated with retrieval performance, whereas within-network connectivity did not: a higher level of negative coupling or competition between the default mode and the executive networks during the after encoding condition was associated with increased retrieval performance in the older adults, but not in the young group. Data suggest that the effective formation of memory traces depends on an age-dependent, dynamic reorganization of the interaction between multiple, large-scale functional networks. Our findings demonstrate that a cross-network based approach can further the understanding of the neural underpinnings of aging- associated memory decline

    Cognitive training with and without additional physical activity in healthy older adults: cognitive effects, neurobiological mechanisms, and prediction of training success

    No full text
    Data is inconsistent concerning the question whether cognitive-physical training (CPT) yields stronger cognitive gains than cognitive training (CT). Effects of additional counseling, neurobiological mechanisms, and predictors have scarcely been studied. Healthy older adults were trained with CT (n=20), CPT (n=25), or CPT with counseling (CPT+C; n=23). Cognition, physical fitness, BDNF, IGF-1, and VEGF were assessed at pre- and posttest. No interaction effects were found except for one effect showing that CPT+C led to stronger gains in verbal fluency than CPT (p = .03). However, this superiority could not be assigned to additional physical training gains. Low baseline cognitive performance and BDNF, not carrying apoE4, gains in physical fitness and the moderation of gains in physical fitness x gains in BDNF predicted training success. Although all types of interventions seem successful to enhance cognition, our data do not support the hypotheses that CPT shows superior cognitive training gains compared to CT or that CPT+C adds merit to CPT. However, as CPT leads to additional gains in physical fitness which in turn is known to have positive impact on cognition in the long-term, CPT seems more beneficial. Training success can partly be predicted by neuropsychological, neurobiological, and genetic parameters.http://www.who.int/ictrp; ID: DRKS0000519
    corecore