1 research outputs found

    Optimization of Parameters for the Cutting of Wood-Based Materials by a CO2 Laser

    No full text
    This article deals with the laser cutting of wood and wood composites. The laser cutting of wood and wood composites is widely accepted and used by the wood industry (due to its many advantages compared to, e.g., saw cutting). The goal of this research was to optimize the cutting parameters of spruce wood (Pices abies L.) by a low-power CO2 laser. The influence of three factors was investigated, namely, the effect of the laser power (100 and 150 W), cutting speed (3, 6, and 9 mm·s−1), and number of annual rings (3–11) on the width of the cutting kerf on the top board, on the width of the cutting kerf on the bottom board, on the ratio of the cutting kerf width on the top and bottom of the board, on the width of the heat-affected area on both sides of the cutting kerf (this applies to the top and bottom of the board), and on the degree of charring. Analysis of variance (ANOVA) and correlation and regression analysis were used for developing a linear regression model without interactions and a quadratic regression model with quadratic interactions. Based on the developed models, the optimization of parameter settings of the investigated process was performed in order to achieve the final kerf quality. The improvement in the quality of the part ranged from 3% to more than 30%. The results were compared with other research dealing with the laser cutting of wood and wood composites
    corecore