6 research outputs found

    Effective radiation dose reduction in computed tomography-guided spinal injections: a prospective, comparative study with technical considerations

    Get PDF
    Despite the good general patient acceptance, high patient comfort, safety and precision in the needle placement, exposure to radiation in computed tomography (CT)- guided spinal interventions remains a serious concern, and is often used to argue against its use. The aim of this study was to determine the technical possibilities of reducing the radiation dose in CT-guided epidural and periradicular injections in lumbar spine. We evaluated the possibilities of reducing radiation dose to the patient and operator during CT-guided injections on the lumbar spine using the following steps: significant reduction of the tube current and energy used for the topogram-acquisition, narrowing the area of interest in spiral CTmode and reduction of tube current and radiation energy in the final intervention mode. Fifty-three CT-guided spinal injections were performed in the lumbar spine (34 epidural lumbar, 19 lumbar periradicular) using a low-dose protocol in non-obese patients and compared with 1870 CT-guided injections from the year 2010, when a standard dose protocol was used. Technical considerations on radiation dose reduction were provided. An average dose reduction of 85% was achieved using the low-dose protocol in CTguided epidural and periradicular injections in lumbar spine without showing any effect on safety or precision

    Open Access Effective Dose of CT-Guided Epidural and Periradicular Injections of the Lumbar Spine: A Retrospective Study

    Get PDF
    Abstract: Spinal injection procedures can be performed blindly or, more accurately, with fluoroscopic or computed tomography (CT) guidance. Radiographic guidance for selective nerve root blocks and epidural injections allows an accurate needle placement, reduces the procedure time and is more secure for the patient, especially in patients with marked degenerative changes and scoliosis, resulting in a narrowing of the interlaminar space. Limiting factors remain the availability of scanners and the radiation dose. Interventional CT scan protocols in axial CT-acquisition mode for epidural and periradicular injections help to limit the radiation dose without a significant decrease of image quality. The purpose of this retrospective study was to analyze the effective radiation dosage patients are exposed during CT-guided epidural lumbar and periradicular injections. A total amount of n=1870 datasets from 18 months were analyzed after multiplying the dose length product with conversion factor k for each lumbar segment. For lumbar epidural injections (n=1286), a mean effective dose of 1.34 mSv (CI 95%, 1.30-1.38), for periradicular injections (n=584) a mean effective dose of 1.38 mSv (CI 95%, 1.32-1.44) were calculated

    Radiation dose reduction in CT-guided periradicular injections in lumbar spine: Feasibility of a new institutional protocol for improved patient safety

    No full text
    Abstract Background Image guided spinal injections are successfully used in the management of low back pain and sciatica. The main benefit of CT-guided injections is the safe, fast and precise needle placement, but the radiation exposure remains a serious concern. The purpose of the study was to test a new institutional low-dose protocol for CT-guided periradicular injections in lumbar spine to reduce radiation exposure while increasing accuracy and safety for the patients. Methods We performed a retrospective analysis of a prospective database during a 4-month period (Oct-Dec 2011) at a German University hospital using a newly established low-dose-CT-protocol for periradicular injections in patients suffering from lumbar disc herniation and nerve root entrapment. Inclusion criteria were acute or chronic nerve root irritation due to lumbar disc hernia, age over 18, compliance and informed consent. Excluded were patients suffering from severe obesity (BMI > 30), coagulopathy, allergy to injected substances, infection and non-compliant patients. Outcome parameters consisted of the measured dose length product (mGycm2), the amount of scans, age, gender, BMI and the peri-interventional complications. The results were compared to 50 patients, treated in the standard-interventional CT-protocol for spinal injections, performed in June-Oct 2011, who met the above mentioned inclusion criteria. Results A total amount of 100 patients were enrolled in the study. A significant radiation dose reduction (average 85.31%) was achieved using the institutional low-dose protocol compared to standard intervention mode in CT-guided periradicular injections in lumbar spine. Using the low-dose protocol did not increase the complications rate in the analyzed cohort. Conclusions Low-dose-CT-protocols for lumbar perineural injections significantly reduce the exposure to radiation of non-obese patients without an increase of complications. This increases long-time patient safety of stochastic radiation effects.</p
    corecore