55 research outputs found

    The relationship between workload, fatigue and sleep quality of psychiatric staff.

    Get PDF
    The present research investigated the relationship between workload, fatigue, and sleep quality of physicians and nurses in psychiatric hospitals by conducting a cross-sectional survey and a diary study. Both studies were conducted in China in early 2021, investigating the effect of workload on fatigue and sleep quality among psychiatric staff in a real-life setting. Study 1 was a cross-sessional survey, investigating 334 responses from physicians and nurses in five psychiatric hospitals, and Study 2 was a diary study examining the association between workload, fatigue and sleep quality in the working week of 48 psychiatric staff. The findings from the first study showed that the staff reported a high workload, and fatigue and poor sleep quality were very prevalent. Workload was the strongest predictor of fatigue. In the diary study, workload and fatigue increased over the week, and sleep quality declined. This research has identified the importance of studying workload and its effects on psychiatric staff

    THE INFLUENCE OF NANOCELLULOSE AND SILICON DIOXIDE ON THE MECHANICAL PROPERTIES OF THE CELL WALL WITH RELATION TO THE BOND INTERFACE BETWEEN WOOD AND UREA-FORMALDEHYDE RESIN

    Get PDF
    Urea-formaldehyde (UF) resin is used as an adhesive in the most wood-based composite plants in China. The quality of such composites is strongly affected by the mechanical properties of the cell wall in relation to the interface between UF resin and wood. This research investigates the mechanical properties of the cell wall in the bond interface of wood and UF resin with nanocellulose and silicon dioxide, and compares the mechanical properties of wood-adhesive interface cell walls to their gluing strength. The hardness and reduced modulus of the cell wall were investigated by means of nanoindentation. The test results show that there was a close relationship between the mechanical properties of the cell walls at the wood-adhesive interface and the percentage of nanocellulose or SiO2 in the UF. The shear strength of UF resin with nanofibrillated cellulose (NFC) or nano-SiO2 in bonded wood also gradually increased when the content of these two kinds of nanomaterials was increased from 0% to 2%

    Design and implementation of quantitative remote sensing monitoring and intelligent analysis system for mine ecological environment

    Get PDF
    Mine ecological environment monitoring and governance is a critical requirement for national ecological civilization construction and the dual carbon goal. The informatization and intelligent construction of the mine ecological environment have become an important part of Digital China driven by the new generation of information technology, and it is also an inevitable trend in the development of the current era. However, existing mine ecological environment monitoring systems are still in the primary stage with a single theme, incomplete elements, basic measurement, and local management, and they cannot meet the demand for multi-element, long-term, high-frequency monitoring and analysis of the mine ecological environment. To address this problem, the quantitative remote sensing monitoring and intelligent analysis system for the mine ecological environment under B/S architecture is proposed, called Mine Ecology Remote Eyes. The development requirements, technical framework, key technologies, and core functions of the system are further described in detail. The system utilizes satellite remote sensing technology and other monitoring methods to obtain and aggregate mine ecological big data from different sources, forming a map of mine distribution and data resource services. Using quantitative remote sensing to invert ecological parameters of mine environments, a set of long-term and multi-element monitoring products can be generated. These products cover various ecological elements such as human activities, natural geographical conditions, and “vegetation-soil-water-atmosphere” parameters. The system provides a range of tools for GIS spatial and temporal analysis, statistical analysis, and comprehensive quantitative evaluation. With these tools, users can monitor spatial changes in ecological parameters such as land use and normalized difference vegetation index (NDVI) in mining areas along with mining activities, as well as query and visualize historical statistical values of ecological elements such as soil water content and suspended solids concentration in water under different spatiotemporal locations or regions. Additionally, the system enables comprehensive quantitative evaluation of the quality of the mine ecological environment taking into account multiple ecological elements. Finally, the system generates a monitoring report on ecological disturbance and governance of the mine. The application of Mine Ecology Remote Eyes will facilitate the change monitoring, data management, intelligent analysis, and decision-making applications of the mine ecological environment. This system has the potential to improve the efficiency and intelligence level of monitoring and governance of the mine ecological environment, and provides a reference for promoting the informatization of ecological civilization

    Existence of positive almost periodic solutions for delay Lotka-Volterra cooperative systems

    No full text
    In this article, we study a Lotka-Volterra cooperative system of equations with time-varying delays and distributed delays. By using Mawhin's continuation theorem of coincidence degree theory, we obtain sufficient conditions for the existence of positive almost periodic solutions. Also we present an example to illustrate our results

    Global Robust Attractive and Invariant Sets of Fuzzy Neural Networks with Delays and Impulses

    Get PDF
    A class of fuzzy neural networks (FNNs) with time-varying delays and impulses is investigated. With removing some restrictions on the amplification functions, a new differential inequality is established, which improves previouse criteria. Applying this differential inequality, a series of new and useful criteria are obtained to ensure the existence of global robust attracting and invariant sets for FNNs with time-varying delays and impulses. Our main results allow much broader application for fuzzy and impulsive neural networks with or without delays. An example is given to illustrate the effectiveness of our results

    A Unified Approach to Solvability and Stability of Multipoint BVPs for Langevin and Sturm–Liouville Equations with CH–Fractional Derivatives and Impulses via Coincidence Theory

    No full text
    The Langevin equation is a model for describing Brownian motion, while the Sturm–Liouville equation is an important mechanical model. This paper focuses on the solvability and stability of nonlinear impulsive Langevin and Sturm–Liouville equations with Caputo–Hadamard (CH) fractional derivatives and multipoint boundary value conditions. To unify the two types of equations, we investigate a general nonlinear impulsive coupled implicit system. By cleverly constructing relevant operators involving impulsive terms, we establish the coincidence degree theory and obtain the solvability. We explore the stability of solutions using nonlinear analysis and inequality techniques. As the most direct application, we naturally obtained the solvability and stability of the Langevin and Sturm–Liouville equations mentioned above. Finally, an example is provided to demonstrate the validity and availability of our major findings

    Analysis of the Characteristics of Climate Change in the Ecologically Vulnerable Area of the Mu Us Dune Field under the Background of Global Warming

    No full text
    The Mu Us dune field is one of China’s four major dune fields, which are ecologically vulnerable areas of northwest semiarid land across Shaanxi, Ningxia, and Inner Mongolia, also very sensitive to the global temperature rise and environmental changes. This paper uses data on the temperature, precipitation, and precipitable water vapor (PWV) in the Mu Us dune field and its surrounding areas to analyze and discuss the time series and spatial distribution characteristics of these three factors in this area. The results of the study show that, in recent years, the trend of temperature increase in the Mu Us dune field has been higher than the average level in China, but this trend has gradually subsided since 2000. The spatial distribution of temperature presents an obvious characteristic of gradual increase from north to south and is affected by latitude, altitude, and topography. The annual cumulative precipitation of the Mu Us dune field is lower than the average level in China. However, in recent years, the rate of the increase in precipitation in this area has been significantly higher than that of the average rate of increase in China. The eastern part of the dune field has the most precipitation, which gradually decreases to the west. The spatial distribution of precipitation is greatly affected by monsoon factors in the region and the distribution of rivers. In the research field, PWV has been rising in recent years, which is greatly related to the increase of vegetation coverage in this region. This demonstrates that the Mu Us dune field has experienced a “warmer and wetter” trend in recent years

    A universal, rapid method for clean transfer of nanostructures onto various substrates

    No full text
    Transfer and integration of nanostructures onto target substrates is the prerequisite for their fundamental studies and practical applications. Conventional transfer techniques that involve stamping, lift-off, and/or striping suffer from the process-specific drawbacks, such as the requirement for chemical etchant or high-temperature annealing and the introduction of surface discontinuities and/or contaminations that can greatly hinder the properties and functions of the transferred materials. Herein, we report a universal and rapid transfer method implementable at mild conditions. Nanostructures with various dimensionalities (i.e., nanoparticles, nanowires, and nanosheets) and surface properties (i.e., hydrophilic and hydrophobic) can be easily transferred to diverse substrates including hydrophilic, hydrophobic, and flexible surfaces with good fidelity. Importantly, our method ensures the rapid and clean transfer of two-dimensional materials and allows for the facile fabrication of vertical heterostructures with various compositions used for electronic devices. We believe that our method can facilitate the development of nanoelectronics by accelerating the clean transfer and integration of low-dimensional materials into multidimensional structures

    Layer thinning and etching of mechanically exfoliated MoS2 nanosheets by thermal annealing in air

    No full text
    A simple thermal annealing method for layer thinning and etching of mechanically exfoliated MoS2 nanosheets in air is reported. Using this method, single-layer (1L) MoS2 nanosheets are achieved after the thinning of MoS2 nanosheets from double-layer (2L) to quadri-layer (4L) at 330 °C. The as-prepared 1L MoS2 nanosheet shows comparable optical and electrical properties with the mechanically exfoliated, pristine one. In addition, for the first time, the MoS2 mesh with high-density of triangular pits is also fabricated at 330 °C, which might arise from the anisotropic etching of the active MoS2 edge sites. As a result of thermal annealing in air, the thinning of MoS2 nanosheet is possible due to its oxidation to form MoO3. Importantly, the MoO3 fragments on the top of thinned MoS2 layer induces the hole injection, resulting in the p-type channel in fabricated field-effect transistors
    • …
    corecore