475 research outputs found

    Writing 3D patterns of microvessels

    Get PDF

    Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting

    Get PDF
    We analyze the localized surface plasmon resonance spectra of periodic square lattice arrays of gold nano-disks, and we describe numerically and experimentally the effect of disorder on resonance width, spectrum, and EM field enhancement in increasingly randomized patterns. The periodic structure shows a narrower and stronger extinction peak, conversely we observe an increase of up to (1-2) x 10(2) times enhancement as the disorder is gradually introduced. This allows for simpler, lower resolution fabrication, cost-effective in light harvesting for solar cell and sensing applications. We show that dipole-dipole interactions contribute to diffract light parallel to the surface as a mean of long-range coupling between the nano-disks. (C) 2012 Optical Society of Americ

    Laser-induced microexplosion confined in a bulk of silica: formation of nanovoids

    Get PDF
    We report on the nanovoid formation inside synthetic silica, viosil, by single femtosecond pulses of 30–100nJ energy, 800nm wavelength, and 180fs duration. It is demonstrated that the void is formed as a result of shock and rarefaction waves at pulse power much lower than the threshold of self-focusing. The shock-compressed region around the nanovoid is demonstrated to have higher chemical reactivity. This was used to reveal the extent of the shock-compressed region by wet etching. Application potential of nanostructuring of dielectrics is discussed

    Generation of high energy density by fs-laser-induced confined microexplosion

    Get PDF
    Confined microexplosion produced by a tightly focused fs-laser pulse inside transparent material proved to be an efficient and inexpensive method for achieving high energy density up to several MJ per cm3 in the laboratory table-top experiments. First studies already confirmed the generation of TPa-range pressure, the formation of novel super-dense material phases and revealed an unexpected phenomenon of spatial separation of ions with different masses in hot non-equilibrium plasma of confined microexplosion. In this paper, we show that the intense focused pulse propagation accompanied by a gradual increase of ionization nonlinearity changes the profile and spectrum of the pulse. We demonstrate that the motion of the ionization front in the direction opposite to the pulse propagation reduces the absorbed energy density. The voids in our experiments with fused silica produced by the microexplosion-generated pressure above Young's modulus indicate, however, that laser fluence up to 50 times above the ionization threshold is effectively absorbed in the bulk of the material. The analysis shows that the ion separation is enhanced in the non-ideal plasma of microexplosion. These findings open new avenues for the studies of high-pressure material transformations and warm dense matter conditions by confined microexplosion produced by intense fs-laser

    Extreme Energy Density Confined Inside a Transparent Crystal: Status and Perspectives of Solid-Plasma-Solid Transformations

    Get PDF
    It was demonstrated during the past decade that an ultra-short intense laser pulse tightly-focused deep inside a transparent dielectric generates an energy density in excess of several MJ/cm3. Such an energy concentration with extremely high heating and fast quenching rates leads to unusual solid-plasma-solid transformation paths, overcoming kinetic barriers to the formation of previously unknown high-pressure material phases, which are preserved in the surrounding pristine crystal. These results were obtained with a pulse of a Gaussian shape in space and in time. Recently, it has been shown that the Bessel-shaped pulse could transform a much larger amount of material and allegedly create even higher energy density than what was achieved with the Gaussian beam (GB) pulses. Here, we present a succinct review of previous results and discuss the possible routes for achieving higher energy density employing the Bessel beam (BB) pulses and take advantage of their unique properties.The Australian Research Council Discovery project DP170100131

    Dielectric geometric phase optical elements from femtosecond direct laser writing

    Full text link
    We propose to use femtosecond direct laser writing technique to realize dielectric optical elements from photo-resist materials for the generation of structured light from purely geometrical phase transformations. This is illustrated by the fabrication and characterization of spin-to-orbital optical angular momentum couplers generating optical vortices of topological charge from 1 to 20. In addition, the technique is scalable and allows obtaining microscopic to macroscopic flat optics. These results thus demonstrate that direct 3D photopolymerization technology qualifies for the realization of spin-controlled geometric phase optical elements.Comment: 6 figure
    • …
    corecore