243 research outputs found

    Baseline correction for FAST radio recombination lines: a modified penalized least squares smoothing technique

    Full text link
    A pilot project has been proceeded to map 1 deg2^2 on the Galactic plane for radio recombination lines (RRLs) using the Five hundred meter Aperture Spherical Telescope (FAST). The motivation is to verify the techniques and reliabilities for a large-scale Galactic plane RRL survey with FAST aiming to investigate the ionized environment in the Galaxy. The data shows that the bandpass of the FAST 19 beam L-band is severely affected by radio frequency interferences (RFIs) and standing wave ripples, which can hardly be corrected by traditional low order polynomials. In this paper, we investigate a series of penalized least square (PLS) based baseline correction methods for radio astronomical spectra that usually contain weak signals with high level of noise. Three promising penalized least squares based methods, AsLS, arPLS, and asPLS are evaluated. Adopting their advantages, a modified method named rrlPLS is developed to optimize the baseline fitting to our RRL spectra. To check their effectiveness, the four methods are tested by simulations and further verified using observed data sets. It turns out that the rrlPLS method, with optimized parameter λ=2×108\lambda = 2 \times 10^8 , reveals the most sensitive and reliable emission features in the RRL map. By injecting artificial line profiles into the real data cube, a further evaluation of profile distortion is conducted for rrlPLS. Comparing to simulated signals, the processed lines with low signal-to-noise ratio are less affected, of which the uncertainties are mainly caused by the rms noise. The rrlPLS method will be applied for baseline correction in future data processing pipeline of FAST RRL survey. Configured with proper parameters, the rrlPLS technique verified in this work may also be used for other spectroscopy projects.Comment: accepted for publication in PAS

    SMA observations of C2H in High-Mass Star Forming Regions

    Full text link
    C2_2H is a representative hydrocarbon that is abundant and ubiquitous in the interstellar medium (ISM). To study its chemical properties, we present Submillimeter Array (SMA) observations of the C2_2H N=3−2N=3-2 and HC3_3N J=30−29J=30-29 transitions and the 1.1 mm continuum emission toward four OB cluster-forming regions, AFGL 490, ON 1, W33 Main, and G10.6-0.4, which cover a bolometric luminosity range of ∼\sim103^3--106^6 L⊙L_{\odot}. We found that on large scales, the C2_2H emission traces the dense molecular envelope. However, for all observed sources, the peaks of C2_2H emission are offset by several times times 104^4 AU from the peaks of 1.1 mm continuum emission, where the most luminous stars are located. By comparing the distribution and profiles of C2_2H hyperfine lines and the 1.1 mm continuum emission, we find that the C2_2H column density (and abundance) around the 1.1 mm continuum peaks is lower than those in the ambient gas envelope. Chemical models suggest that C2_2H might be transformed to other species owing to increased temperature and density; thus, its reduced abundance could be the signpost of the heated molecular gas in the ∼\sim104^4 AU vicinity around the embedded high-mass stars. Our results support such theoretical prediction for centrally embedded ∼103\sim10^3--106L⊙10^6L_{\odot} OB star-forming cores, while future higher-resolution observations are required to examine the C2_2H transformation around the localized sites of high-mass star formation.Comment: 10 pages, 6 figures. ApJ accepted. Comments welcom

    Pyrene-Fused s-Indacene

    Get PDF
    One antiaromatic polycyclic hydrocarbon (PH) with and without solubilizing tert-butyl substituents, namely s-indaceno[2,1-a:6,5-a′]dipyrene (IDPs), has been synthesized by a four-step protocol. The IDPs represent the longitudinal, peri-extension of the indeno[1,2-b]fluorene skeleton towards a planar 40 π-electron system. Their structures were unambiguously confirmed by X-ray crystallographic analysis. The optoelectronic properties were studied by UV/vis absorption spectroscopy and cyclic voltammetry. These studies revealed that peri-fusion renders the IDP derivatives with a narrow optical energy gap of 1.8 eV. The maximum absorption of IDPs is shifted by 160 nm compared to the parent indenofluorene. Two quasi-reversible oxidation as well as reduction steps indicate an excellent redox behavior attributed to the antiaromatic core. Formation of the radical cation and the dication was monitored by UV/vis absorption spectroscopy during titration experiments. Notably, the fusion of s-indacene with two pyrene moieties lead to IDPs with absorption maxima approaching the near infrared (NIR) regime

    Sulfur-doped Nanographenes Containing Multiple Subhelicenes

    Get PDF
    In this work, we describe the synthesis and characterization of three novel sulfur-doped nanographenes (NGs) (1–3) containing multiple subhelicenes, including carbo[4]helicenes, thieno[4]helicenes, carbo[5]helicenes, and thieno[5]helicenes. Density functional theory calculations reveal that the helicene substructures in 1–3 possess dihedral angles from 15° to 34°. The optical energy gaps of 1–3 are estimated to be 2.67, 2.45, and 2.30 eV, respectively. These three sulfur-doped NGs show enlarged energy gaps compared to those of their pristine carbon analogues

    Spatial distribution of NH2D in massive star-forming regions

    Full text link
    To understand the relation between NH2_2D and its physical environment, we mapped ortho-NH2_2D 111s−101a1_{11}^s-1_{01}^a at 85.9 GHz toward 24 Galactic late-stage massive star-forming regions with Institut de Radioastronomie Millimeˊ \'etrique (IRAM) 30-m telescope. Ortho-NH2_2D 111s−101a1_{11}^s-1_{01}^a was detected in 18 of 24 sources. Comparing with the distribution of H13^{13}CN 1-0 as a dense gas tracer and radio recombination line H42α\alpha, ortho-NH2_2D 111s−101a1_{11}^s-1_{01}^a present complex and diverse spatial distribution in these targets. 11 of the 18 targets, present a different distribution between ortho-NH2_2D 111s−101a1_{11}^s-1_{01}^a and H13^{13}CN 1-0, while no significant difference between these two lines can be found in the other 7 sources, mainly due to limited spatial resolution and sensitivity. Moreover, with H42α\alpha tracing massive young stellar objects, ortho-NH2_2D 111s−101a1_{11}^s-1_{01}^a seems to show a relatively weak emission near the massive young stellar objects.Comment: 30 pages, 20 figures, 4 tables. Accepted to MNRA

    Design and Control of a Single-Motor-Actuated Robotic Fish Capable of Fast Swimming and Maneuverability

    Full text link

    Carbon-Chain Molecules in Molecular Outflows and Lupus I Region--New Producing Region and New Forming Mechanism

    Full text link
    Using the new equipment of the Shanghai Tian Ma Radio Telescope, we have searched for carbon-chain molecules (CCMs) towards five outflow sources and six Lupus I starless dust cores, including one region known to be characterized by warm carbon-chain chemistry (WCCC), Lupus I-1 (IRAS 15398-3359), and one TMC-1 like cloud, Lupus I-6 (Lupus-1A). Lines of HC3N J=2-1, HC5N J=6-5, HC7N J=14-13, 15-14, 16-15 and C3S J=3-2 were detected in all the targets except in the outflow source L1660 and the starless dust core Lupus I-3/4. The column densities of nitrogen-bearing species range from 1012^{12} to 1014^{14} cm−2^{-2} and those of C3_3S are about 1012^{12} cm−2^{-2}. Two outflow sources, I20582+7724 and L1221, could be identified as new carbon-chain--producing regions. Four of the Lupus I dust cores are newly identified as early quiescent and dark carbon-chain--producing regions similar to Lup I-6, which together with the WCCC source, Lup I-1, indicate that carbon-chain-producing regions are popular in Lupus I which can be regard as a Taurus like molecular cloud complex in our Galaxy. The column densities of C3S are larger than those of HC7N in the three outflow sources I20582, L1221 and L1251A. Shocked carbon-chain chemistry (SCCC) is proposed to explain the abnormal high abundances of C3S compared with those of nitrogen-bearing CCMs. Gas-grain chemical models support the idea that shocks can fuel the environment of those sources with enough S+S^+ thus driving the generation of S-bearing CCMs.Comment: 7 figures, 8 tables, accepted by MNRA

    Widespread subsonic turbulence in Ophiuchus North 1

    Full text link
    Supersonic motions are common in molecular clouds. (Sub)sonic turbulence is usually detected toward dense cores and filaments. However, it remains unknown whether (sub)sonic motions at larger scales (≳\gtrsim1~pc) can be present in different environments or not. Located at a distance of about 110 pc, Ophiuchus North 1 (Oph N1) is one of the nearest molecular clouds that allows in-depth investigation of its turbulence properties by large-scale mapping observations of single-dish telescopes. We carried out the 12^{12}CO (J=1−0J=1-0) and C18^{18}O (J=1−0J=1-0) imaging observations toward Oph N1 with the Purple Mountain Observatory 13.7 m telescope. The observations have an angular resolution of ∼\sim55\arcsec (i.e., 0.03~pc). Most of the whole C18^{18}O emitting regions have Mach numbers of ≲\lesssim1, demonstrating the large-scale (sub)sonic turbulence across Oph N1. Based on the polarization measurements, we estimate the magnetic field strength of the plane-of-sky component to be ≳\gtrsim9~μ\muG. We infer that Oph N1 is globally sub-Alfv{\'e}nic, and is supported against gravity mainly by the magnetic field. The steep velocity structure function can be caused by the expansion of the Sh~2-27 H{\scriptsize II} region or the dissipative range of incompressible turbulence. Our observations reveal a surprising case of clouds characterised by widespread subsonic turbulence and steep size-linewidth relationship. This cloud is magnetized where ion-neutral friction should play an important role.Comment: 16 pages, 12 figures, accepted for publication in A&
    • …
    corecore