96 research outputs found
Nonlinear magnetotransport shaped by Fermi surface topology and convexity in WTe2
The nature of Fermi surface defines the physical properties of conductors and
many physical phenomena can be traced to its shape. Although the recent
discovery of a current-dependent nonlinear magnetoresistance in spin-polarized
non-magnetic materials has attracted considerable attention in spintronics,
correlations between this phenomenon and the underlying fermiology remain
unexplored. Here, we report the observation of nonlinear magnetoresistance at
room temperature in a semimetal WTe2, with an interesting temperature-driven
inversion. Theoretical calculations reproduce the nonlinear transport
measurements and allow us to attribute the inversion to temperature-induced
changes in Fermi surface convexity. We also report a large anisotropy of
nonlinear magnetoresistance in WTe2, due to its low symmetry of Fermi surfaces.
The good agreement between experiments and theoretical modeling reveals the
critical role of Fermi surface topology and convexity on the nonlinear
magneto-response. These results lay a new path to explore ramifications of
distinct fermiology for nonlinear transport in condensed-matter
FishIR : Identifying Pufferfish Individual based on Deep Learning and Face Recognition
Peer reviewe
Facile synthesis of composition-tuned ZnO/Zn x Cd1-xSe nanowires for photovoltaic applications
Assessment risk of osteoporosis in Chinese people: relationship among body mass index, serum lipid profiles, blood glucose, and bone mineral density
Evaluation of serum lipid profile, body mass index, and waistline in Chinese patients with type 2 diabetes mellitus
Reversing abnormal hole localization in high-Al-content AlGaN quantum well to enhance deep ultraviolet emission by regulating the orbital state coupling
AlGaN has attracted considerable interest for ultraviolet (UV) applications. With the development of UV optoelectronic devices, abnormal carrier confinement behaviour has been observed forc-plane-oriented AlGaN quantum wells (QWs) with high Al content. Because of the dispersive crystal field split-off hole band (CH band) composed ofp(z)orbitals, the abnormal confinement becomes the limiting factor for efficient UV light emission. This observation differs from the widely accepted concept that confinement of carriers at the lowest quantum level is more pronounced than that at higher quantum levels, which has been an established conclusion for conventional continuous potential wells. In particular, orientationalp(z)orbitals are sensitive to the confinement direction in line with the conducting direction, which affects the orbital intercoupling. In this work, models of Al0.75Ga0.25N/AlN QWs constructed with variable lattice orientations were used to investigate the orbital intercoupling among atoms between the well and barrier regions. Orbital engineering of QWs was implemented by changing the orbital state confinement, with the well plane inclined from 0 degrees to 90 degrees at a step of 30 degrees (referred to thecplane). The barrier potential and transition rate at the band edge were enhanced through this orbital engineering. The concept of orbital engineering was also demonstrated through the construction of inclined QW planes on semi- and nonpolar planes implemented in microrods with pyramid-shaped tops. The higher emission intensity from the QWs on the nonpolar plane compared with those on the polar plane was confirmed via localized cathodoluminescence (CL) maps
Energy Management of Combined Cooling, Heating and Power Micro Energy Grid Based on Leader-Follower Game Theory
In this paper, we consider a general model and solution algorithm for the energy management of combined cooling, heating, and power micro energy grid (MEG) under the game theory framework. An innovative dynamic leader-follower game strategy is proposed in this paper to balance the interactions between MEG and user. We show that such game between MEG and user has a unique Nash equilibrium (NE), and in order to quantify the user’s expenditure and dissatisfaction, we model them and adopt the fuzzy bi-objective algorithm. For more details in the proposed game model, the MEG leads the game by deciding energy sales prices and optimizing the power, cooling and heating outputs according to the user’s load plan to maximize its own profit. With the prices being released by MEG, user’s adjustment of energy consumption follows and is again fed to MEG. In practice, we initialize simulations with daily loads of a typical community. As the numerical results demonstrate, MEG is proficient in consumption capacity of renewable energy and energy optimization. It also shows that the user achieves his economic optimum with experience of energy usage taken into account
Characteristics of InN epilayers grown with H2-assistance
A series of InN films were grown on GaN-on-sapphire template with H2 pulse flow by metal organic vapor phase epitaxy. The scanning electron microscopy and atomic force microscopy observations demonstrate that the smooth surface has been achieved. The X-ray diffraction and Raman spectra measurements indicate that InN layers experience stronger accommodated compressive stress, resulting in a larger fraction of (002) oriented InN grains. On the basics of the first-principles calculations, these features can be understand as competition between N-penetrating effect with the assistance of the H atom and the etching effect of H2. Finally, the absorption spectra in conjunction with simulated results reveal that the band gap energy predominantly increase with increasing compressive strain
- …