13 research outputs found
A High-Diversity Transceiver Design for MISO Broadcast Channels
In this paper, the outage behavior and diversity order of the mixture
transceiver architecture for multiple-input single-output broadcast channels
are analyzed. The mixture scheme groups users with closely-aligned channels and
applies superposition coding and successive interference cancellation decoding
to each group composed of users with closely-aligned channels, while applying
zero-forcing beamforming across semi-orthogonal user groups. In order to enable
such analysis, closed-form lower bounds on the achievable rates of a general
multiple-input single-output broadcast channel with superposition coding and
successive interference cancellation are newly derived. By employing
channel-adaptive user grouping and proper power allocation, which ensures that
the channel subspaces of user groups have angle larger than a certain
threshold, it is shown that the mixture transceiver architecture achieves full
diversity order in multiple-input single-output broadcast channels and
opportunistically increases the multiplexing gain while achieving full
diversity order. Furthermore, the achieved full diversity order is the same as
that of the single-user maximum ratio transmit beamforming. Hence, the mixture
scheme can provide reliable communication under channel fading for
ultra-reliable low latency communication. Numerical results validate our
analysis and show the outage superiority of the mixture scheme over
conventional transceiver designs for multiple-input single-output broadcast
channels.Comment: The inner region is evaluated. The single-group SIC performance is
evaluate
Pilot Beam Sequence Design for Channel Estimation in Millimeter-Wave MIMO Systems: A POMDP Framework
In this paper, adaptive pilot beam sequence design for channel estimation in
large millimeter-wave (mmWave) MIMO systems is considered. By exploiting the
sparsity of mmWave MIMO channels with the virtual channel representation and
imposing a Markovian random walk assumption on the physical movement of the
line-of-sight (LOS) and reflection clusters, it is shown that the sparse
channel estimation problem in large mmWave MIMO systems reduces to a sequential
detection problem that finds the locations and values of the non-zero-valued
bins in a two-dimensional rectangular grid, and the optimal adaptive pilot
design problem can be cast into the framework of a partially observable Markov
decision process (POMDP). Under the POMDP framework, an optimal adaptive pilot
beam sequence design method is obtained to maximize the accumulated
transmission data rate for a given period of time. Numerical results are
provided to validate our pilot signal design method and they show that the
proposed method yields good performance.Comment: 6 pages, 6 figures, submitted to IEEE ICC 201
Effect of Ce Doping of a Co/Al2O3 Catalyst on Hydrogen Production via Propane Steam Reforming
We synthesized cerium-doped cobalt-alumina (CoxCey/Al2O3) catalysts for the propane steam reforming (PSR) reaction. Adding cerium introduces oxygen vacancies, and the oxygen transfer capacity of the Ce promoter favors CO to CO2 conversion during PSR, inhibiting coke deposition and promoting hydrogen production. The best PSR activity was achieved at 700 °C using the Co0.85Ce0.15/Al2O3 catalyst, which showed 100% propane (C3H8) conversion and about 75% H2 selectivity, and 6% CO, 5% CO2, and 4% CH4 were obtained. In contrast, the H2 selectivity of the base catalyst, Co/Al2O3, is 64%. The origin of the difference in activity was the lower C3H8 gas desorption temperature of the Co0.85Ce0.15/Al2O3 catalyst compared to that of the Co/Al2O3 catalyst; thus, the PSR occurred at low temperatures. Furthermore, more CO was adsorbed on the Co0.85Ce0.15/Al2O3 catalyst, and subsequently, desorbed as CO2. The activation energy for water desorption from the Co0.85Ce0.15/Al2O3 catalyst was 266.96 kJ/mol, higher than that from Co/Al2O3. Furthermore, the water introduced during the reaction probably reacted with CO on the Co0.85Ce0.15/Al2O3 catalyst, increasing CO2 generation. Finally, we propose a mechanism involving the Co0.85Ce0.15/Al2O3 catalyst, wherein propane is reformed on CoxCey sites, forming H2, and CO, followed by the conversion of CO to CO2 by water on CeO2 sites