164 research outputs found

    Calculation of the current noise spectrum in mesoscopic transport: an efficient quantum master equation approach

    Full text link
    Based on our recent work on quantum transport [Li et al., Phys. Rev. B 71, 205304 (2005)], where the calculation of transport current by means of quantum master equation was presented, in this paper we show how an efficient calculation can be performed for the transport noise spectrum. Compared to the longstanding classical rate equation or the recently proposed quantum trajectory method, the approach presented in this paper combines their respective advantages, i.e., it enables us to tackle both the many-body Coulomb interactionand quantum coherence on equal footing and under a wide range of setup circumstances. The practical performance and advantages are illustrated by a number of examples, where besides the known results and new insights obtained in a transparent manner, we find that this alternative approach is much simpler than other well-known full quantum mechanical methods such as the Landauer-B\"uttiker scattering matrix theory and the nonequilibrium Green's function technique.Comment: 13 pages, 3 figures, submitted to PR

    Full counting statistics of renormalized dynamics in open quantum transport system

    Full text link
    The internal dynamics of a double quantum dot system is renormalized due to coupling respectively with transport electrodes and a dissipative heat bath. Their essential differences are identified unambiguously in the context of full counting statistics. The electrode coupling caused level detuning renormalization gives rise to a fast-to-slow transport mechanism, which is not resolved at all in the average current, but revealed uniquely by pronounced super-Poissonian shot noise and skewness. The heat bath coupling introduces an interdot coupling renormalization, which results in asymmetric Fano factor and an intriguing change of line shape in the skewness.Comment: 9 pages, 5 figure

    Painterly Image Harmonization in Dual Domains

    Full text link
    Image harmonization aims to produce visually harmonious composite images by adjusting the foreground appearance to be compatible with the background. When the composite image has photographic foreground and painterly background, the task is called painterly image harmonization. There are only few works on this task, which are either time-consuming or weak in generating well-harmonized results. In this work, we propose a novel painterly harmonization network consisting of a dual-domain generator and a dual-domain discriminator, which harmonizes the composite image in both spatial domain and frequency domain. The dual-domain generator performs harmonization by using AdaIN modules in the spatial domain and our proposed ResFFT modules in the frequency domain. The dual-domain discriminator attempts to distinguish the inharmonious patches based on the spatial feature and frequency feature of each patch, which can enhance the ability of generator in an adversarial manner. Extensive experiments on the benchmark dataset show the effectiveness of our method. Our code and model are available at https://github.com/bcmi/PHDNet-Painterly-Image-Harmonization.Comment: Accepted by AAAI202

    Distance-dependent emission spectrum from two qubits in a strong-coupling regime

    Full text link
    We study the emission spectrum of two distant qubits strongly coupled to a waveguide by using the numerical and analytical approaches, which are beyond the Markovian approximation and the rotating-wave approximation (RWA). The numerical approach combines the Dirac-Frenkel time-dependent variational principle with the multiple Davydov D1D_{1} ansatz. A transformed RWA (TRWA) treatment and a standard perturbation (SP) are used to analytically calculate the emission spectrum. It is found that the variational approach and the TRWA treatment yield accurate emission spectra of the two distant qubits in certain strong coupling regimes while the SP breaks down. The emission spectrum is found to be asymmetric irrespective of the two-qubit distance and exhibits a single peak, doublet, and multipeaks depending on the two-qubit distance as well as the initial states. In sharply contrast with the single-qubit case, the excited-state populations of the two qubits can ultraslowly decay due to the subradiance even in the presence of a strong qubit-waveguide coupling, which in turn yields ultranarrow emission line. Our results provide insights into the emission spectral features of the two distant qubits in the strong light-matter coupling regime.Comment: 15 pages, 4 figure

    Variational approach to time-dependent fluorescence of a driven qubit

    Full text link
    We employ the Dirac-Frenkel variational principle and multiple Davydov ansatz to study time-dependent fluorescence spectra of a driven qubit in the weak- to strong qubit-reservoir coupling regimes, where both the Rabi frequency and spontaneous decay rate are comparable to the transition frequency of the qubit. Our method agrees well with the time-local master-equation approach in the weak-coupling regime, and offers a flexible way to compute the spectra from the bosonic dynamics instead of two-time correlation functions. While the perturbative master equation breaks down in the strong-coupling regime, our method actually becomes more accurate due to the use of bosonic coherent states under certain conditions. We show that the counter-rotating coupling between the qubit and the reservoir has considerable contributions to the photon number dynamics and the spectra under strong driving conditions even though the coupling is moderately weak. The time-dependent spectra are found to be generally asymmetric, a feature that is derived from photon number dynamics. In addition, it is shown that the spectral profiles can be dramatically different from the Mollow triplet due to strong dissipation and/or multiphoton processes associated with the strong driving. Our formalism provides a unique perspective to interpret time-dependent spectra.Comment: 19 pages, 8 figure

    Painterly Image Harmonization via Adversarial Residual Learning

    Full text link
    Image compositing plays a vital role in photo editing. After inserting a foreground object into another background image, the composite image may look unnatural and inharmonious. When the foreground is photorealistic and the background is an artistic painting, painterly image harmonization aims to transfer the style of background painting to the foreground object, which is a challenging task due to the large domain gap between foreground and background. In this work, we employ adversarial learning to bridge the domain gap between foreground feature map and background feature map. Specifically, we design a dual-encoder generator, in which the residual encoder produces the residual features added to the foreground feature map from main encoder. Then, a pixel-wise discriminator plays against the generator, encouraging the refined foreground feature map to be indistinguishable from background feature map. Extensive experiments demonstrate that our method could achieve more harmonious and visually appealing results than previous methods.Comment: Accepted by WACV202

    Spin-resolved counting statistics as a sensitive probe of spin correlation in transport through a quantum dot spin valve

    Full text link
    We investigate the noise in spin transport through a single quantum dot (QD) tunnel coupled to ferromagnetic electrodes with noncollinear magnetizations. Based on a spin-resolved quantum master equation, auto- and cross-correlations of spin-resolved currents are analyzed to reveal the underlying spin transport dynamics and characteristics for various polarizations. We find the currents of majority and minority spins could be strongly autocorrelated despite uncorrelated charge transfer. The interplay between tunnel coupling and the Coulomb interaction gives rise to an exchange magnetic field, leading to the precession of the accumulated spin in the QD. It strongly suppresses the bunching of spin tunneling events and results in a unique double-peak structure in the noise of the net spin current. The spin autocorrelation is found to be susceptible to magnetization alignments, which may serve as a sensitive tool to measure the magnetization directions between the ferromagnetic electrodes.Comment: 9 pages, 4 figure
    • …
    corecore