18 research outputs found

    General characterization of Antarctic micrometeorites collected by the 39th Japanese Antarctic Research Expedition: Consortium studies of JARE AMMs (III)

    Get PDF
    From November 1998 to January 1999,the 39th Japanese Antarctic Research Expedition (JARE-39) undertook Japanese first large-scale collection of Antarctic micrometeorites (AMMs), with sizes larger than 10μm, at the Meteorite Ice Field around the Yamato Mountains in Antarctica (at three different locations, for a total of 24 collection sites). The number of collected AMMs larger than 40μm is estimated to be about 5000. Here we present the general characterization (i.e., micro-morphology and surface chemical composition using SEM/EDS) of ∿810 AMMs chosen from 5 of the 24 sites. Additionally, the mineral composition of 61 out of 810 AMMs was determined by Synchrotron X-ray radiation. Preliminary results on mineralogical and chemical compositions show similarities with that of previous studies, even though a pronounced alteration of some AMMs is noticed. A correlation is found between the Mg/Si ratio at the sample\u27s surfaces of unmelted AMMs and the age of snow/ice in which the AMMs are embedded

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Differential adaptive responses to 1‐ or 2‐day fasting in various mouse tissues revealed by quantitative PCR analysis

    Get PDF
    Dietary or caloric restriction confers various clinical benefits. Short‐term fasting of mice is a common experimental procedure that may involve systemic metabolic remodeling, which may significantly affect experimental outputs. This study evaluated adaptive cellular responses after 1‐ or 2‐day fasting in 13 mouse tissues by quantitative PCR using 15 marker primer sets for the activation of ubiquitin–proteasome (Atrogin‐1 andMuRF1), autophagy–lysosome (LC3b,p62 andLamp2), amino acid response (Asns,Trib3,Herpud1,xCT, andChop), Nrf2‐mediated antioxidant (HO‐1 andGsta1), and amino acid transport (Slc38a2,Slc7a5, andSlc7a1) systems. Differential activation profiles obtained in seven highly (thymus, liver, spleen, and small intestine) or mildly (stomach, kidney, and colon) atrophied tissues as well as in six non‐atrophied tissues (brain, eye, lung, heart, skeletal muscle, and testis) suggested tissue‐specific active metabolic remodeling

    2D DIGE proteomic analysis reveals fasting‐induced protein remodeling through organ‐specific transcription factor(s) in mice

    No full text
    Overnight fasting is a routine procedure before surgery in clinical settings. Intermittent fasting is the most common diet/fitness trend implemented for weight loss and the treatment of lifestyle‐related diseases. In either setting, the effects not directly related to parameters of interest, either beneficial or harmful, are often ignored. We previously demonstrated differential activation of cellular adaptive responses in 13 atrophied/nonatrophied organs of fasted mice by quantitative PCR analysis of gene expression. Here, we investigated 2‐day fasting‐induced protein remodeling in six major mouse organs (liver, kidney, thymus, spleen, brain, and testis) using two‐dimensional difference gel electrophoresis (2D DIGE) proteomics as an alternative means to examine systemic adaptive responses. Quantitative analysis of protein expression followed by protein identification using matrix‐assisted laser desorption ionization–time‐of‐flight mass spectrometry (MALDI‐TOFMS) revealed that the expression levels of 72, 26, and 14 proteins were significantly up‐ or downregulated in the highly atrophied liver, thymus, and spleen, respectively, and the expression levels of 32 proteins were up‐ or downregulated in the mildly atrophied kidney. Conversely, there were no significant protein expression changes in the nonatrophied organs, brain and testis. Upstream regulator analysis highlighted transcriptional regulation by peroxisome proliferator‐activated receptor alpha (PPARα) in the liver and kidney and by tumor protein/suppressor p53 (TP53) in the thymus, spleen, and liver. These results imply of the existence of both common and distinct adaptive responses between major mouse organs, which involve transcriptional regulation of specific protein expression upon short‐term fasting. Our data may be valuable in understanding systemic transcriptional regulation upon fasting in experimental animals
    corecore