46 research outputs found

    Absolute static-field magnetometry, magnetic gradiometry, and vector electrometry with circular Rydberg atoms

    Get PDF
    Helium atoms in pulsed supersonic beams have been prepared in the circular Rydberg state with principal quantum number n = 55 using the crossed-fields method. High-resolution microwave spectroscopy of the transition from this state to the n = 56 circular state, at frequencies close to 38.5 GHz, was performed to measure static magnetic and electric fields along the axis of propagation of the beams with quantum-state-selective detection by pulsed-electric-field ionization. Magnetic fields of between 1.3 and 1.6 mT were measured to a relative precision of ±900 nT by rf spectroscopy and ±1.3 µT by microwave spectroscopy, with absolute calibration, accounting for Doppler shifts and effects of weak stray electric fields to ±2.0 µT and a spatial resolution of ±0.87 mm. Magnetic-field gradients could be determined to a precision of ±1.49 µT/mm (±53 nT/mm) over a baseline of 1.74 mm (35 mm). To perform these measurements, static electric fields and contributions from the motional Stark effect were minimized, and residual electric fields in each of the three spatial dimensions in the apparatus were measured to an absolute precision of between ±85 and ±750 µV/cm. The methods used in this work can be transferred to experiments with other atoms or molecules. They are therefore well suited for applications in minimally invasive, absolute static-field magnetometry and electrometry, for example, at hybrid interfaces between Rydberg atoms and superconducting circuits; in tests of bound-state QED or the weak equivalence principle with atomic or molecular hydrogen, antihydrogen, or positronium; and in measurements of the absolute neutrino mass by cyclotron radiation emission spectroscopy

    Multiple Population Alternate Evolution Neural Architecture Search

    Full text link
    The effectiveness of Evolutionary Neural Architecture Search (ENAS) is influenced by the design of the search space. Nevertheless, common methods including the global search space, scalable search space and hierarchical search space have certain limitations. Specifically, the global search space requires a significant amount of computational resources and time, the scalable search space sacrifices the diversity of network structures and the hierarchical search space increases the search cost in exchange for network diversity. To address above limitation, we propose a novel paradigm of searching neural network architectures and design the Multiple Population Alternate Evolution Neural Architecture Search (MPAE), which can achieve module diversity with a smaller search cost. MPAE converts the search space into L interconnected units and sequentially searches the units, then the above search of the entire network be cycled several times to reduce the impact of previous units on subsequent units. To accelerate the population evolution process, we also propose the the population migration mechanism establishes an excellent migration archive and transfers the excellent knowledge and experience in the migration archive to new populations. The proposed method requires only 0.3 GPU days to search a neural network on the CIFAR dataset and achieves the state-of-the-art results

    Activation of the IL-23/Th17 Axis

    Get PDF
    The aim of this paper is to determine the modulatory effects of Lactobacillus acidophilus on the IL-23/Th17 immune axis in experimental colitis. DSS-induced mouse models of UC were to be saline, hormones, and different concentrations of Lactobacillus acidophilus intervention. The expression of interleukin-(IL-) 17, tumor necrosis factor (TNF ), IL-23, transforming growth factor 1 (TGF 1), signal transducer and activator of transcription 3 (STAT3), and phosphorylated (p)-STAT3 was examined by RT-PCR, Western blotting, and immunohistochemical analysis. And the results showed that administration of L. acidophilus suppressed Th17 cell-mediated secretion of proinflammatory cytokine IL-17 through downregulation of IL-23 and TGF 1 expression and downstream phosphorylation of p-STAT3

    GWAS Analysis and QTL Identification of Fiber Quality Traits and Yield Components in Upland Cotton Using Enriched High-Density SNP Markers

    Get PDF
    It is of great importance to identify quantitative trait loci (QTL) controlling fiber quality traits and yield components for future marker-assisted selection (MAS) and candidate gene function identifications. In this study, two kinds of traits in 231 F6:8 recombinant inbred lines (RILs), derived from an intraspecific cross between Xinluzao24, a cultivar with elite fiber quality, and Lumianyan28, a cultivar with wide adaptability and high yield potential, were measured in nine environments. This RIL population was genotyped by 122 SSR and 4729 SNP markers, which were also used to construct the genetic map. The map covered 2477.99 cM of hirsutum genome, with an average marker interval of 0.51 cM between adjacent markers. As a result, a total of 134 QTLs for fiber quality traits and 122 QTLs for yield components were detected, with 2.18–24.45 and 1.68–28.27% proportions of the phenotypic variance explained by each QTL, respectively. Among these QTLs, 57 were detected in at least two environments, named stable QTLs. A total of 209 and 139 quantitative trait nucleotides (QTNs) were associated with fiber quality traits and yield components by four multilocus genome-wide association studies methods, respectively. Among these QTNs, 74 were detected by at least two algorithms or in two environments. The candidate genes harbored by 57 stable QTLs were compared with the ones associated with QTN, and 35 common candidate genes were found. Among these common candidate genes, four were possibly “pleiotropic.” This study provided important information for MAS and candidate gene functional studies

    Low-energy stereodynamics of ion-forming reactions

    No full text
    In this thesis, an experimental study of low-temperature stereodynamics in the reactive scattering of Ne(3P2) + X collisions (X = Ar, Kr, Xe, CO and N2) is presented. The steric effect of Ne(3P2) in these reactions is observed experimentally using a controllable magnetic field. The observations are interpreted using classical and quantum models. This study provides state-selected stereodynamics over a wide range of collision energies from 1000 K down to sub-Kelvin energies using a combination of the merged beam technique and external field manipulation. The key parameter to characterize the steric effect in these reactions is the branching between different possible reaction channels as a function of magnetic field direction. These branching ratios are obtained for individual states that differ only in Omega, the projection of the neon total angular momentum vector on the inter-particle axis, by using a Monte-Carlo fitting algorithm to fit an analytical expression for the relative importance of the different, state and process-specific, reaction channels to the experimental data. From the comparison of these experimental data, several interesting dynamical phenomena are found, including the reorientation effect and predissociation in atom-molecule collisions, which provides a new way to understand the reaction dynamics at low temperatures. Finally, we use a combination of an electrostatic hexapole and (2+1) resonance-enhanced multiphoton ionization to produce and characterize an oriented ammonia sample (ND3) using a controllable electric field, which provides a method to study the stereodynamics of Ne(3P2) with oriented polar molecules

    Investigation of the low-energy stereodynamics in the Ne(3P2) + N2, CO reactions

    No full text
    We report on an experimental investigation of the low-energy stereodynamics of the energy transfer reactions Ne(3P2) + X, producing Ne(1S) + X+ and [Ne–X]+ (X = N2 or CO). Collision energies in the range 0.2 K–700 K are obtained by using the merged beam technique. Two kinds of product ions are generated by Penning and associative ionization, respectively. The intermediate product [Ne–X]+ in vibrationally excited states can predissociate into bare ions (X+). The experimental ratio of the NeX+ and X+ product ion yields is similar for both molecules at high collision energies but diverge at collision energies below 100 K. This difference is explained by the first excited electronic state of the product ions, which is accessible in the case of CO but lies too high in energy in the case of N2
    corecore