213 research outputs found

    Measuring the phonon-assisted spectral function by using a non-quilibrium three-terminal single-molecular device

    Full text link
    The electron transport through a three-terminal single-molecular transistor (SMT) is theoretically studied. We find that the differential conductance of the third and weakly coupled terminal versus its voltage matches well with the spectral function versus the energy when certain conditions are met. Particularly, this excellent matching is maintained even for complicated structure of the phonon-assisted side peaks. Thus, this device offers an experimental approach to explore the shape of the phonon-assisted spectral function in detail. In addition we discuss the conditions of a perfect matching. The results show that at low temperatures the matching survives regardless of the bias and the energy levels of the SMT. However, at high temperatures, the matching is destroyed.Comment: 9 pages, 5 figure

    One-dimensional quantum channel in a graphene line defect

    Full text link
    Using a tight-binding model, we study a line defect in graphene where a bulk energy gap is opened by sublattice symmetry breaking. It is found that sublattice symmetry breaking may induce many configurations that correspond to different band spectra. In particular, a gapless state is observed for a configuration which hold a mirror symmetry with respect to the line defect. We find that this gapless state originates from the line defect and is independent of the width of the graphene ribbon, the location of the line defect, and the potentials in the edges of the ribbon. In particular, the gapless state can be controlled by the gate voltage embedded below the line defect. Finally, this result is supported with conductance calculations. This study shows how a quantum channel could be constructed using a line defect, and how the quantum channel can be controlled by tuning the gate voltage embedded below the line defect.Comment: 8 pages, 10 figure

    Provable Sample-Efficient Sparse Phase Retrieval Initialized by Truncated Power Method

    Full text link
    We study the sparse phase retrieval problem, recovering an ss-sparse length-nn signal from mm magnitude-only measurements. Two-stage non-convex approaches have drawn much attention in recent studies for this problem. Despite non-convexity, many two-stage algorithms provably converge to the underlying solution linearly when appropriately initialized. However, in terms of sample complexity, the bottleneck of those algorithms often comes from the initialization stage. Although the refinement stage usually needs only m=Ω(slogn)m=\Omega(s\log n) measurements, the widely used spectral initialization in the initialization stage requires m=Ω(s2logn)m=\Omega(s^2\log n) measurements to produce a desired initial guess, which causes the total sample complexity order-wisely more than necessary. To reduce the number of measurements, we propose a truncated power method to replace the spectral initialization for non-convex sparse phase retrieval algorithms. We prove that m=Ω(sˉslogn)m=\Omega(\bar{s} s\log n) measurements, where sˉ\bar{s} is the stable sparsity of the underlying signal, are sufficient to produce a desired initial guess. When the underlying signal contains only very few significant components, the sample complexity of the proposed algorithm is m=Ω(slogn)m=\Omega(s\log n) and optimal. Numerical experiments illustrate that the proposed method is more sample-efficient than state-of-the-art algorithms

    Disorder and metal-insulator transitions in Weyl semimetals

    Full text link
    The Weyl semimetal (WSM) is a newly proposed quantum state of matter. It has Weyl nodes in bulk excitations and Fermi arcs surface states. We study the effects of disorder and localization in WSMs and find three exotic phase transitions. (I) Two Weyl nodes near the Brillouin zone boundary can be annihilated pairwise by disorder scattering, resulting in the opening of a topologically nontrivial gap and a transition from a WSM to a three-dimensional (3D) quantum anomalous Hall state. (II) When the two Weyl nodes are well separated in momentum space, the emergent bulk extended states can give rise to a direct transition from a WSM to a 3D diffusive anomalous Hall metal. (III) Two Weyl nodes can emerge near the zone center when an insulating gap closes with increasing disorder, enabling a direct transition from a normal band insulator to a WSM. We determine the phase diagram by numerically computing the localization length and the Hall conductivity, and propose that the exotic phase transitions can be realized on a photonic lattice.Comment: 7 pages with appendix, 6 figure

    Disorder induced field effect transistor in bilayer and trilayer graphene

    Full text link
    We propose use of disorder to produce a field effect transistor (FET) in biased bilayer and trilayer graphene. Modulation of the bias voltage can produce large variations in the conductance when the disorder's effects are confined to only one of the graphene layers. This effect is based on the bias voltage's ability to select which of the graphene layers carries current, and is not tied to the presence of a gap in the density of states. In particular, we demonstrate this effect in models of gapless ABA-stacked trilayer graphene, gapped ABC-stacked trilayer graphene, and gapped bilayer graphene.Comment: 21 pages, 7 figure
    corecore