12 research outputs found

    Feasibility of Overground Gait Training Using a Joint-Torque-Assisting Wearable Exoskeletal Robot in Children with Static Brain Injury

    No full text
    Pediatric gait disorders are often chronic and accompanied by various complications, which challenge rehabilitation efforts. Here, we retrospectively analyzed the feasibility of overground robot-assisted gait training (RAGT) using a joint-torque-assisting wearable exoskeletal robot. In this study, 17 children with spastic cerebral palsy, cerebellar ataxia, and chronic traumatic brain injury received RAGT sessions. The Gross Motor Function Measure (GMFM), 6-min walk test (6 MWT), and 10-m walk test (10 MWT) were performed before and after intervention. The oxygen rate difference between resting and training was performed to evaluate the intensity of training in randomly selected sessions, while the Quebec User Evaluation of Satisfaction with assistive Technology 2.0 assessment was performed to evaluate its acceptability. A total of four of five items in the GMFM, gait speed on the 10 MWT, and total distance on the 6 MWT showed statistically significant improvement (p < 0.05). The oxygen rate was significantly higher during the training versus resting state. Altogether, six out of eight domains showed satisfaction scores more than four out of five points. In conclusion, overground training using a joint-torque-assisting wearable exoskeletal robot showed improvement in gross motor and gait functions after the intervention, induced intensive gait training, and achieved high satisfaction scores in children with static brain injury

    Path Partitioning Problem with Terminal Node Constraints

    No full text
    1

    Scheduling equal length jobs with eligibility restrictions

    No full text
    We consider the problem of scheduling independent jobs on identical parallel machines to minimize the total completion time. Each job has a set of eligible machines and a given release date, and all jobs have equal processing times. For the problem with a fixed number of machines, we determine its computational complexity by providing a polynomial time dynamic programming algorithm. We also present two polynomial time approximation algorithms along with their worst case analyses. Experiments with randomly generated instances show that the proposed algorithms consistently generate schedules that are very close to optimal.11Nsciescopu

    Development of Scheduling Algorithms for a Crowdsourced Delivery Persons

    No full text
    1

    The Effects of Wearing Facemasks during Vigorous Exercise in the Aspect of Cardiopulmonary Response, In-Mask Environment, and Subject Discomfort

    No full text
    Non-pharmaceutical intervention such as wearing a mask during the pandemic of SARS-CoV-2 is one of the most important ways to prevent the spread of the virus. However, despite high effectiveness and easy to access, the biggest problem is ‘discomfort’. The purpose of this study was to measure the changes of cardiopulmonary response and related factors affecting breathing discomfort when wearing a mask during vigorous exercise. Fifteen healthy male adults participated in this study. The experimental protocol consisted of three conditions: no mask; KF-94 mask; and sports mask. Each condition consisted of three stages: stage I, 2 m/s on even level; stage II, 2 m/s with 5° inclination; and stage III, 3 m/s on even level. Oxygen saturation (SaO2) and heart rate (HR), partial pressure of carbon dioxide (pCO2), energy expenditure index (EEI), in-mask temperature, humidity, and a five-point scale questionnaire to evaluate subjective discomfort were measured. The results show that there was a significantly higher discomfort score in mask conditions compared with no mask (p < 0.05) and only pCO2 change significantly related to subjective discomfort during exercise (p < 0.05). Moreover, the pCO2 washout was significantly disturbed when wearing a sports mask in stages 2 and 3, which was related to wearer subjective discomfor

    An iterated greedy matheuristic for scheduling in steelmaking-continuous casting process

    No full text
    Steelmaking-Continuous Casting (SCC) is a bottleneck in the steel production process and its scheduling has become more challenging over time. In this paper, we provide an extensive literature review that highlights challenges in the SCC scheduling and compares existing solution methods. From the literature review, we collect the essential features of an SCC process, such as unrelated parallel machine environments, stage skipping, and maximum waiting time limits in between successive stages. We consider an SCC scheduling problem with as objective the minimisation of the weighted sum of cast break penalties, total waiting time, total earliness, and total tardiness. We formulate the problem as a mixed-integer linear programming model and develop an iterated greedy matheuristic that solves its subproblems to find a near-optimal solution. Through numerical experiments, we show that our algorithm outperforms two types of genetic algorithms when applied to test instances.11Nsciescopu

    Feasibility of Overground Gait Training Using a Joint-Torque-Assisting Wearable Exoskeletal Robot in Children with Static Brain Injury

    No full text
    Pediatric gait disorders are often chronic and accompanied by various complications, which challenge rehabilitation efforts. Here, we retrospectively analyzed the feasibility of overground robot-assisted gait training (RAGT) using a joint-torque-assisting wearable exoskeletal robot. In this study, 17 children with spastic cerebral palsy, cerebellar ataxia, and chronic traumatic brain injury received RAGT sessions. The Gross Motor Function Measure (GMFM), 6-min walk test (6 MWT), and 10-m walk test (10 MWT) were performed before and after intervention. The oxygen rate difference between resting and training was performed to evaluate the intensity of training in randomly selected sessions, while the Quebec User Evaluation of Satisfaction with assistive Technology 2.0 assessment was performed to evaluate its acceptability. A total of four of five items in the GMFM, gait speed on the 10 MWT, and total distance on the 6 MWT showed statistically significant improvement (p < 0.05). The oxygen rate was significantly higher during the training versus resting state. Altogether, six out of eight domains showed satisfaction scores more than four out of five points. In conclusion, overground training using a joint-torque-assisting wearable exoskeletal robot showed improvement in gross motor and gait functions after the intervention, induced intensive gait training, and achieved high satisfaction scores in children with static brain injury

    Gait Adaptation Is Different between the Affected and Unaffected Legs in Children with Spastic Hemiplegic Cerebral Palsy While Walking on a Changing Slope

    No full text
    Walking on sloped surfaces requires additional effort; how individuals with spastic hemiplegic cerebral palsy (CP) manage their gait on slopes remains unknown. Herein, we analyzed the difference in gait adaptation between the affected and unaffected legs according to changes in the incline by measuring spatiotemporal and kinematic data in children with spastic hemiplegic CP. Seventeen children underwent instrumented three-dimensional gait analysis on a dynamic pitch treadmill at an incline of +10&deg; to &minus;10&deg; (intervals of 5&deg;). While the step length of the affected legs increased during uphill gait and decreased during downhill gait, the unaffected legs showed no significance. During uphill gait, the hip, knee, and ankle joints of the affected and unaffected legs showed increased flexion, while the unaffected leg showed increased knee flexion throughout most of the stance phase compared with the affected leg. During downhill gait, hip and knee flexion increased in the affected leg, and knee flexion increased in the unaffected leg during the early swing phase. However, the ankle plantar flexion increased during the stance phase only in the unaffected leg. Although alterations in temporospatial variables and joint kinematics occurred in both legs as the slope angle changed, they showed different adaptation mechanisms
    corecore