218 research outputs found

    Coupling ideality of integrated planar high-Q microresonators

    Get PDF
    Chipscale microresonators with integrated planar optical waveguides are useful building blocks for linear, nonlinear and quantum optical devices. Loss reduction through improving fabrication processes has resulted in several integrated micro resonator platforms attaining quality (Q) factors of several millions. However only few studies have investigated design-dependent losses, especially with regard to the resonator coupling section. Here we investigate design-dependent parasitic losses, described by the coupling ideality, of the commonly employed microresonator design consisting of a microring resonator waveguide side-coupled to a straight bus waveguide. By systematic characterization of multi-mode high-Q silicon nitride microresonator devices, we show that this design can suffer from low coupling ideality. By performing full 3D simulations to numerically investigate the resonator to bus waveguide coupling, we identify the coupling to higher-order bus waveguide modes as the dominant origin of parasitic losses which lead to the low coupling ideality. Using suitably designed bus waveguides, parasitic losses are mitigated, and a nearly unity ideality and strong overcoupling (i.e. a ratio of external coupling to internal resonator loss rate > 9) are demonstrated. Moreover we find that different resonator modes can exchange power through the coupler, which therefore constitutes a mechanism that induces modal coupling, a phenomenon known to distort resonator dispersion properties. Our results demonstrate the potential for significant performance improvements of integrated planar microresonators, achievable by optimized coupler designs.Comment: 8 pages, 3 figures, 1 tabl

    Probing the loss origins of ultra-smooth Si3N4\mathrm{Si_3N_4} integrated photonic waveguides

    Full text link
    On-chip optical waveguides with low propagation losses and precisely engineered group velocity dispersion (GVD) are important to nonlinear photonic devices such as soliton microcombs. Yet, despite intensive research efforts, nonlinear integrated photonic platforms still feature propagation losses orders of magnitude higher than in standard optical fiber. The tight confinement and high index contrast of integrated waveguides make them highly susceptible to fabrication induced surface roughness. Therefore, microresonators with ultra-high Q factors are, to date, only attainable in polished bulk crystalline, or chemically etched silica based devices, that pose however challenges for full photonic integration. Here, we demonstrate the fabrication of silicon nitride (Si3N4\mathrm{Si_3N_4}) waveguides with unprecedentedly smooth sidewalls and tight confinement with record low propagation losses. This is achieved by combining the photonic Damascene process with a novel reflow process, which reduces etching roughness, while sufficiently preserving dimensional accuracy. This leads to previously unattainable \emph{mean} microresonator Q factors larger than 5Ă—1065\times10^6 for tightly confining waveguides with anomalous dispersion. Via systematic process step variation and two independent characterization techniques we differentiate the scattering and absorption loss contributions, and reveal metal impurity related absorption to be an important loss origin. Although such impurities are known to limit optical fibers, this is the first time they are identified, and play a tangible role, in absorption of integrated microresonators. Taken together, our work provides new insights in the origins of propagation losses in Si3N4\mathrm{Si_3N_4} waveguides and provides the technological basis for integrated nonlinear photonics in the ultra-high Q regime

    Dual chirped micro-comb based parallel ranging at megapixel-line rates

    Full text link
    Laser based ranging (LiDAR) - already ubiquitously used in industrial monitoring, atmospheric dynamics, or geodesy - is key sensor technology. Coherent laser ranging, in contrast to time-of-flight approaches, is immune to ambient light, operates continuous wave allowing higher average powers, and yields simultaneous velocity and distance information. State-of-the-art coherent single laser-detector architectures reach hundreds of kilopixel per second rates. While emerging applications such as autonomous driving, robotics, and augmented reality mandate megapixel per second point sampling to support real-time video-rate imaging. Yet, such rates of coherent LiDAR have not been demonstrated. Here we report a swept dual-soliton microcomb technique enabling coherent ranging and velocimetry at megapixel per second line scan measurement rates with up to 64 spectrally dispersed optical channels. It is based on recent advances in photonic chip-based microcombs that offer a solution to reduce complexity both on the transmitter and receiver sides. Multi-heterodyning two synchronously frequency-modulated microcombs yields distance and velocity information of all individual ranging channels on a single receiver alleviating the need for individual separation, detection, and digitization. The reported LiDAR implementation is hardware-efficient, compatible with photonic integration, and demonstrates the significant advantages of acquisition speed afforded by the convergence of optical telecommunication and metrology technologies. We anticipate our research will motivate further investigation of frequency swept microresonator dual-comb approach in the neighboring fields of linear and nonlinear spectroscopy, optical coherence tomography

    Nanophotonic soliton-based microwave synthesizers

    Full text link
    Microwave photonic technologies, which upshift the carrier into the optical domain to facilitate the generation and processing of ultrawide-band electronic signals at vastly reduced fractional bandwidths, have the potential to achieve superior performance compared to conventional electronics for targeted functions. For microwave photonic applications such as filters, coherent radars, subnoise detection, optical communications and low-noise microwave generation, frequency combs are key building blocks. By virtue of soliton microcombs, frequency combs can now be built using CMOS compatible photonic integrated circuits, operated with low power and noise, and have already been employed in system-level demonstrations. Yet, currently developed photonic integrated microcombs all operate with repetition rates significantly beyond those that conventional electronics can detect and process, compounding their use in microwave photonics. Here we demonstrate integrated soliton microcombs operating in two widely employed microwave bands, X- and K-band. These devices can produce more than 300 comb lines within the 3-dB-bandwidth, and generate microwave signals featuring phase noise levels below 105 dBc/Hz (140 dBc/Hz) at 10 kHz (1 MHz) offset frequency, comparable to modern electronic microwave synthesizers. In addition, the soliton pulse stream can be injection-locked to a microwave signal, enabling actuator-free repetition rate stabilization, tuning and microwave spectral purification, at power levels compatible with silicon-based lasers (<150 mW). Our results establish photonic integrated soliton microcombs as viable integrated low-noise microwave synthesizers. Further, the low repetition rates are critical for future dense WDM channel generation schemes, and can significantly reduce the system complexity of photonic integrated frequency synthesizers and atomic clocks

    Soliton microcomb based spectral domain optical coherence tomography

    Full text link
    Spectral domain optical coherence tomography (SD-OCT) is a widely used and minimally invaive technique for bio-medical imaging [1]. SD-OCT typically relies on the use of superluminescent diodes (SLD), which provide a low-noise and broadband optical spectrum. Recent advances in photonic chipscale frequency combs [2, 3] based on soliton formation in photonic integrated microresonators provide an chipscale alternative illumination scheme for SD-OCT. Yet to date, the use of such soliton microcombs in OCT has not yet been analyzed. Here we explore the use of soliton microcombs in spectral domain OCT and show that, by using photonic chipscale Si3N4 resonators in conjunction with 1300 nm pump lasers, spectral bandwidths exceeding those of commercial SLDs are possible. We demonstrate that the soliton states in microresonators exhibit a noise floor that is ca. 3 dB lower than for the SLD at identical power, but can exhibit significantly lower noise performance for powers at the milliWatt level. We perform SD-OCT imaging on an ex vivo fixed mouse brain tissue using the soliton microcomb, alongside an SLD for comparison, and demonstrate the principle viability of soliton based SD-OCT. Importantly, we demonstrate that classical amplitude noise of all soliton comb teeth are correlated, i.e. common mode, in contrast to SLD or incoherent microcomb states [4], which should, in theory, improve the image quality. Moreover, we demonstrate the potential for circular ranging, i.e. optical sub-sampling [5, 6], due to the high coherence and temporal periodicity of the soliton state. Taken together, our work indicates the promising properties of soliton microcombs for SD-OCT

    Dynamics of soliton crystals in optical microresonators

    Full text link
    Dissipative Kerr solitons in optical microresonators provide a unifying framework for nonlinear optical physics with photonic-integrated technologies and have recently been employed in a wide range of applications from coherent communications to astrophysical spectrometer calibration. Dissipative Kerr solitons can form a rich variety of stable states, ranging from breathers to multiple-soliton formations, among which, the recently discovered soliton crystals stand out. They represent temporally-ordered ensembles of soliton pulses, which can be regularly arranged by a modulation of the continuous-wave intracavity driving field. To date, however, the dynamics of soliton crystals remains mainly unexplored. Moreover, the vast majority of the reported crystals contained defects - missing or shifted pulses, breaking the symmetry of these states, and no procedure to avoid such defects was suggested. Here we explore the dynamical properties of soliton crystals and discover that often-neglected chaotic operating regimes of the driven optical microresonator are the key to their understanding. In contrast to prior work, we prove the viability of deterministic generation of perfect\mathrm{perfect} soliton crystal states, which correspond to a stable, defect-free lattice of optical pulses inside the cavity. We discover the existence of critical pump power, below which the stochastic process of soliton excitation suddenly becomes deterministic enabling faultless, device-independent access to perfect soliton crystals. Furthermore, we demonstrate the switching of soliton crystal states and prove that it is also tightly linked to the pump power and is only possible in the regime of transient chaos. Finally, we report a number of other dynamical phenomena experimentally observed in soliton crystals including the formation of breathers, transitions between soliton crystals, their melting, and recrystallization

    Massively parallel coherent laser ranging using soliton microcombs

    Full text link
    Coherent ranging, also known as frequency-modulated continuous-wave (FMCW) laser based ranging (LIDAR) is currently developed for long range 3D distance and velocimetry in autonomous driving. Its principle is based on mapping distance to frequency, and to simultaneously measure the Doppler shift of reflected light using frequency chirped signals, similar to Sonar or Radar. Yet, despite these advantages, coherent ranging exhibits lower acquisition speed and requires precisely chirped and highly-coherent laser sources, hindering their widespread use and impeding Parallelization, compared to modern time-of-flight (TOF) ranging that use arrays of individual lasers. Here we demonstrate a novel massively parallel coherent LIDAR scheme using a photonic chip-based microcomb. By fast chirping the pump laser in the soliton existence range of a microcomb with amplitudes up to several GHz and sweep rate up to 10 MHz, the soliton pulse stream acquires a rapid change in the underlying carrier waveform, while retaining its pulse-to-pulse repetition rate. As a result, the chirp from a single narrow-linewidth pump laser is simultaneously transferred to all spectral comb teeth of the soliton at once, and allows for true parallelism in FMCW LIDAR. We demonstrate this approach by generating 30 distinct channels, demonstrating both parallel distance and velocity measurements at an equivalent rate of 3 Mpixel/s, with potential to improve sampling rates beyond 150 Mpixel/s and increase the image refresh rate of FMCW LIDAR up to two orders of magnitude without deterioration of eye safety. The present approach, when combined with photonic phase arrays based on nanophotonic gratings, provides a technological basis for compact, massively parallel and ultra-high frame rate coherent LIDAR systems.Comment: 18 pages, 12 Figure
    • …
    corecore