131 research outputs found
Attacking Transformers with Feature Diversity Adversarial Perturbation
Understanding the mechanisms behind Vision Transformer (ViT), particularly
its vulnerability to adversarial perturba tions, is crucial for addressing
challenges in its real-world applications. Existing ViT adversarial attackers
rely on la bels to calculate the gradient for perturbation, and exhibit low
transferability to other structures and tasks. In this paper, we present a
label-free white-box attack approach for ViT-based models that exhibits strong
transferability to various black box models, including most ViT variants, CNNs,
and MLPs, even for models developed for other modalities. Our inspira tion
comes from the feature collapse phenomenon in ViTs, where the critical
attention mechanism overly depends on the low-frequency component of features,
causing the features in middle-to-end layers to become increasingly similar and
eventually collapse. We propose the feature diversity attacker to naturally
accelerate this process and achieve remarkable performance and transferability
Chromosome-level genome and multi-omics analyses provide insights into the geo-herbalism properties of Alpinia oxyphylla
IntroductionAlpinia oxyphylla Miquel (A. oxyphylla), one of the “Four Famous South Medicines” in China, is an essential understory cash crop that is planted widely in the Hainan, Guangdong, Guangxi, and Fujian provinces. Particularly, A. oxyphylla from Hainan province is highly valued as the best national product for geo-herbalism and is an important indicator of traditional Chinese medicine efficacy. However, the molecular mechanism underlying the formation of its quality remains unspecified.MethodsTo this end, we employed a multi-omics approach to investigate the authentic quality formation of A. oxyphylla.ResultsIn this study, we present a high-quality chromosome-level genome assembly of A. oxyphylla, with contig N50 of 76.96 Mb and a size of approximately 2.08Gb. A total of 38,178 genes were annotated, and the long terminal repeats were found to have a high frequency of 61.70%. Phylogenetic analysis demonstrated a recent whole-genome duplication event (WGD), which occurred before A. oxyphylla’s divergence from W. villosa (~14 Mya) and is shared by other species from the Zingiberaceae family (Ks, ~0.3; 4DTv, ~0.125). Further, 17 regions from four provinces were comprehensively assessed for their metabolite content, and the quality of these four regions varied significantly. Finally, genomic, metabolic, and transcriptomic analyses undertaken on these regions revealed that the content of nootkatone in Hainan was significantly different from that in other provinces.DiscussionOverall, our findings provide novel insights into germplasm conservation, geo-herbalism evaluation, and functional genomic research for the medicinal plant A. oxyphylla
Dynamic Feature Pruning and Consolidation for Occluded Person Re-Identification
Occluded person re-identification (ReID) is a challenging problem due to
contamination from occluders, and existing approaches address the issue with
prior knowledge cues, eg human body key points, semantic segmentations and etc,
which easily fails in the presents of heavy occlusion and other humans as
occluders. In this paper, we propose a feature pruning and consolidation (FPC)
framework to circumvent explicit human structure parse, which mainly consists
of a sparse encoder, a global and local feature ranking module, and a feature
consolidation decoder. Specifically, the sparse encoder drops less important
image tokens (mostly related to background noise and occluders) solely
according to correlation within the class token attention instead of relying on
prior human shape information. Subsequently, the ranking stage relies on the
preserved tokens produced by the sparse encoder to identify k-nearest neighbors
from a pre-trained gallery memory by measuring the image and patch-level
combined similarity. Finally, we use the feature consolidation module to
compensate pruned features using identified neighbors for recovering essential
information while disregarding disturbance from noise and occlusion.
Experimental results demonstrate the effectiveness of our proposed framework on
occluded, partial and holistic Re-ID datasets. In particular, our method
outperforms state-of-the-art results by at least 8.6% mAP and 6.0% Rank-1
accuracy on the challenging Occluded-Duke dataset.Comment: 12 pages, 9 figure
The dynamic effects of maternal high-calorie diet on glycolipid metabolism and gut microbiota from weaning to adulthood in offspring mice
Dysbiosis of gut microbiota can contribute to the progression of diabetes and obesity. Previous studies have shown that maternal high-fat (HF) diet during the perinatal period can alter the microbiota and induce metabolic disorders at weaning. However, whether dysbiosis of gut microbiota and metabolism could be recovered by a normal diet after weaning and the dynamic changes of gut microbiota have not been fully studied. In this study, C57BL/6J female mice were fed with a normal chow (NC) or HF diet for 4 weeks preconception, during gestation, and until pup weaning. After weaning, male offspring were fed with an NC diet until 9 weeks of age. The microbiota of offspring at weaning and 9 weeks of age was collected for 16S rRNA gene amplicon sequencing. We found that dams fed with an HF diet showed glucose intolerance after lactation. Compared with the offspring from NC dams, the offspring from HF dams exhibited a higher body weight, hyperglycemia, glucose intolerance, hyperinsulinemia, hypercholesterolemia, and leptin resistance and lower adiponectin at weaning. Fecal analysis indicated altered microbiota composition between the offspring of the two groups. The decrease in favorable bacteria (such as norank f Bacteroidales S24-7 group) and increase in unfavorable bacteria (such as Lachnoclostridium and Desulfovibrio) were strongly associated with a disturbance of glucose and lipid metabolism. After 6 weeks of normal diet, no difference in body weight, glucose, and lipid profiles was observed between the offspring of the two groups. However, the microbiota composition of offspring in the HF group was still different from that in the NC group, and microbiota diversity was lower in offspring of the HF group. The abundance of Lactobacillus was lower in the offspring of the HF group. In conclusion, a maternal HF diet can induce metabolic homeostasis and gut microbiota disturbance in offspring at weaning. Gut microbiota dysbiosis can persist into adulthood in the offspring, which might have a role in the promotion of susceptibility to obesity and diabetes in the later life of the offspring
Progressive Text-to-Image Diffusion with Soft Latent Direction
In spite of the rapidly evolving landscape of text-to-image generation, the
synthesis and manipulation of multiple entities while adhering to specific
relational constraints pose enduring challenges. This paper introduces an
innovative progressive synthesis and editing operation that systematically
incorporates entities into the target image, ensuring their adherence to
spatial and relational constraints at each sequential step. Our key insight
stems from the observation that while a pre-trained text-to-image diffusion
model adeptly handles one or two entities, it often falters when dealing with a
greater number. To address this limitation, we propose harnessing the
capabilities of a Large Language Model (LLM) to decompose intricate and
protracted text descriptions into coherent directives adhering to stringent
formats. To facilitate the execution of directives involving distinct semantic
operations-namely insertion, editing, and erasing-we formulate the Stimulus,
Response, and Fusion (SRF) framework. Within this framework, latent regions are
gently stimulated in alignment with each operation, followed by the fusion of
the responsive latent components to achieve cohesive entity manipulation. Our
proposed framework yields notable advancements in object synthesis,
particularly when confronted with intricate and lengthy textual inputs.
Consequently, it establishes a new benchmark for text-to-image generation
tasks, further elevating the field's performance standards.Comment: 14 pages, 15 figure
Identification of hub genes in airway epithelial cells of asthma patients by WGCNA and PPI network
258-267Bronchial asthma is a common chronic disease of airway inflammation, high mucus secretion and airway hyper responsiveness. The pathogenetic mechanisms of asthma remain unclear. In this study, we aimed at identifying genes playing an import role in disease-related pathways in airway epithelial cells of asthma patients. Microarray data GSE41861 of asthma airway epithelial cells was used to screen differentially expressed genes (DEGs) through GEO2R analysis. The weighted gene co-expression network analysis (WGCNA) was performed to identify gene co-expression network modules in bronchial asthma. The DAVID database was then used to perform functional and pathway enrichment analysis of these DEGs. In addition, we have conducted protein-protein interaction (PPI) network of DEGs by STRING, and eventually found key genes and significant modules. A total of 315 DEGs (111 up-regulated and 204 down-regulated) were identified between severe asthma and healthy individual, which were mainly involved in pathways of cilium assembly, cilium morphogenesis, axon guidance, positive regulation of fat cell differentiation, and positive regulation of cell substrate adhesion. A total of 60 genes in the black module and green module were considered to be correlated with the severity of asthma. Combining PPI network, several key genes were identified, such as BP2RY14, PTGS1, SLC18A2, SIGLEC6, RGS13, CPA3, and HPGDS. Our findings revealed several genes that may be involved in the process of development of bronchial asthma and potentially be candidate targets for diagnosis or therapy of bronchial asthma
Clinical manifestations and imaging and pathological features of giant cell angioblastoma: Report of four cases and literature review
Giant cell angioblastoma is a relatively rare vasogenic tumour. To date, studies on its clinical manifestations, imaging characteristics, pathological features, and prognosis are extremely limited and unknown, with only a few cases recorded. In this study, four cases of giant cell angioblastoma confirmed by pathological examination were reported to improve our understanding and deep exploration of the tumour spectrum. All cases in our study were male, including two adults and two boys. The lesions were located in the lower segment of the femur, medial condyle of the femur, knee joint, and popliteal fossa. Regarding the imaging characteristics, two patients with lesions in bone showed bone destruction, while the other two had lesions that invaded soft tissues, showing irregular, abnormal signal shadows and obvious enhancement. Histopathological analysis revealed that the nodular tumour tissue was mainly composed of oval and spindle cells, with varying numbers of osteoclast-like multinucleated giant cells, and the interstitial tissues were often filled with blood vessels of different sizes. The immunophenotype demonstrates that endothelial cells of small vessels in nodules expressed CD31, SMA, and ERG, while osteoclast-like multinucleated giant cells and histiocytes expressed CD68 and CD163, and the surrounding cells expressed SMA. All four patients were treated with surgical resection. One of them relapsed 1 month after surgery and received a second surgical resection. No distant metastasis or death occurred during the follow-up period. This study indicates that giant cell angioblastoma is a local invasive vascular tumour that can develop both in children and adults with skin, mucous membrane, soft tissue, and bone involvement. Imaging characteristics show bone destruction and irregular, abnormal signal shadows; in addition, obvious pathological morphological features can be observed. Currently, the treatment is mainly surgical resection, and interferons may be used as adjuvant chemotherapy
Long non-coding RNA PVT1 regulates the migration of hepatocellular carcinoma HepG2 cells via miR-3619-5p/MKL1 axis
Hepatocellular carcinoma (HCC) is the third most common malignant tumor of the digestive system. Plasma cell tumor heterotopic gene 1 (PVT1) is an intergenic long non-coding RNA that is aberrantly expressed in different cancers. Myocardin-related transcription factor A or megakaryoblastic leukemia 1 (MKL1) is a transcriptional coactivator of serum response factor that has been shown to promote cancer cell migration and invasion. In this study, we investigated the relationship between PVT1 and MKL1 as a novel regulatory mechanism underlying HCC progression. We used HepG2 and Cos‑7 cell lines. Transfection experiments with miR-3619-5p mimics/inhibitor, PVT1, siRNA-PVT1, MKL1, or siRNA-MKL1 were performed. RNA and protein levels were analyzed by quantitative reverse transcription PCR and Western blot, respectively. Cell migration was assessed by transwell assay. Luciferase assays, RNA-FISH, RNA immunoprecipitation, and chromatin immunoprecipitation assays were performed to confirm the interaction between PVT1, miR-3619-5p, and MKL1 in HCC cells. Overexpression of PVT1 was positively correlated with MKL1 upregulation, which promoted HepG2 cell migration. miR-3619-5p inhibited MKL1 expression in HCC cells by acting on its 3′-UTR. Furthermore, PVT1 promoted MKL1 expression and migration in HCC cells by directly binding to miR-3619-5p. In a positive feedback loop, MKL1 could activate PVT1 transcription by binding to the CArG box in the promoter region. Our findings may provide a basis for the development of novel targeted therapies in HCC
Autologous CIK cells combined with chemotherapy as the first-line treatment for locally advanced or metastatic gastric cancer is safe and feasible
AimTo evaluate the safety and initial efficacy of autologous cytokine-induced killer (CIK) cells combined with S-1+oxaliplatin (SOX) as the first-line treatment for locally advanced or metastatic gastric cancer (GC).Materials and methodsIn this two-arm, single-center exploratory trial, patients with locally advanced or metastatic GC were randomly assigned (1:1) to receive autologous CIK cells in combination with SOX (CIK-SOX) or SOX alone. The primary endpoint was the incidence of adverse events (AEs). Progression-free survival (PFS), overall survival (OS), objective response rate (ORR), and disease control rate (DCR) served as the secondary endpoints.ResultsFifty-nine patients were enrolled in the study between November 20, 2014 and September 6, 2017. A total of 31 patients received CIK-SOX and 28 patients received SOX. The most common AEs in both groups were gastrointestinal reaction, leucopenia, neutropenia, anemia, thrombocytopenia, hyperbilirubinemia, and elevated aspartate transaminase concentration, with a higher incidence of these conditions in the SOX group. The median PFS for the CIK-SOX and SOX groups was 6.9 and 4.9 months, respectively (hazard ratio (HR) 0.80, p=0.45). The respective median OS values were 17.8 and 9.75 months (HR 0.76, p=0.34). Patients who received more than three injections of specific lymphocyte subsets benefited the most from this combination therapy. Cox univariate and multivariate analyses showed that tumor metastasis to more than two organs was the main risk factor for PFS and OS. A total of 29 patients in the CIK-SOX group and 25 in the SOX group had measurable lesions. The ORR for the CIK-SOX and SOX groups was 55.2% and 32.0%, while the DCR was 93.1% and 88.0%, respectively.ConclusionThe safety of CIK-SOX as the first-line treatment for patients with locally advanced or metastatic GC was good. Although the PFS and OS in the CIK-SOX group were not statistically significantly different compared to the values in the SOX alone group, this treatment increased the PFS and OS duration, with the absolute improvement in OS of about 8.05 months. Continuous benefit from the CIK-SOX treatment was observed during long-term follow-up.Clinical trial registrationhttps://clinicaltrials.gov/study/NCT02504229?term=NCT02504229&rank=1, identifier ChiCTR-IPR-15005923; NCT02504229
- …