17 research outputs found

    Thermal Hydraulic Analysis of a Passive Residual Heat Removal System for an Integral Pressurized Water Reactor

    Get PDF
    A theoretical investigation on the thermal hydraulic characteristics of a new type of passive residual heat removal system (PRHRS), which is connected to the reactor coolant system via the secondary side of the steam generator, for an integral pressurized water reactor is presented in this paper. Three-interknited natural circulation loops are adopted by this PRHRS to remove the residual heat of the reactor core after a reactor trip. Based on the one-dimensional model and a simulation code (SCPRHRS), the transient behaviors of the PRHRS as well as the effects of the height difference between the steam generator and the heat exchanger and the heat transfer area of the heat exchanger are studied in detail. Through the calculation analysis, it is found that the calculated parameter variation trends are reasonable. The higher height difference between the steam generator and the residual heat exchanger and the larger heat transfer area of the residual heat exchanger are favorable to the passive residual heat removal system

    Dosage differences in 12-OXOPHYTODIENOATE REDUCTASE genes modulate wheat root growth

    Get PDF
    Wheat, an essential crop for global food security, is well adapted to a wide variety of soils. However, the gene networks shaping different root architectures remain poorly understood. We report here that dosage differences in a cluster of monocot-specific 12-OXOPHYTODIENOATE REDUCTASE genes from subfamily III (OPRIII) modulate key differences in wheat root architecture, which are associated with grain yield under water-limited conditions. Wheat plants with loss-of-function mutations in OPRIII show longer seminal roots, whereas increased OPRIII dosage or transgenic over-expression result in reduced seminal root growth, precocious development of lateral roots and increased jasmonic acid (JA and JA-Ile). Pharmacological inhibition of JA-biosynthesis abolishes root length differences, consistent with a JA-mediated mechanism. Transcriptome analyses of transgenic and wild-type lines show significant enriched JA-biosynthetic and reactive oxygen species (ROS) pathways, which parallel changes in ROS distribution. OPRIII genes provide a useful entry point to engineer root architecture in wheat and other cereals.Fil: Gabay, Gilad. University of California at Davis; Estados UnidosFil: Wang, Hanchao. University of California at Davis; Estados Unidos. University Of Haifa; IsraelFil: Zhang, Junli. University of California at Davis; Estados UnidosFil: Moriconi, Jorge Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Burguener, Germán Federico. University of California at Davis; Estados UnidosFil: Gualano, Leonardo David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Howell, Tyson. University of California at Davis; Estados UnidosFil: Lukaszewski, Adam. University of California; Estados UnidosFil: Staskawicz, Brian. University of California; Estados UnidosFil: Cho, Myeong-Je. University of California; Estados UnidosFil: Tanaka, Jaclyn. University of California; Estados UnidosFil: Fahima, Tzion. University Of Haifa; IsraelFil: Ke, Haiyan. University of California; Estados UnidosFil: Dehesh, Katayoon. University of California; Estados UnidosFil: Zhang, Guo-Liang. Fudan University; ChinaFil: Gou, Jin Ying. Beijing Key Laboratory Of Crop Genetic Improvement; China. Fudan University; ChinaFil: Hamberg, Mats. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Santa Maria, Guillermo Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Dubcovsky, Jorge. University of California at Davis; Estados Unidos. Howard Hughes Medical Institute; Estados Unido

    Dosage differences in 12-OXOPHYTODIENOATE REDUCTASE genes modulate wheat root growth

    Get PDF
    Wheat, an essential crop for global food security, is well adapted to a wide variety of soils. However, the gene networks shaping different root architectures remain poorly understood. We report here that dosage differences in a cluster of monocot-specific 12-OXOPHYTODIENOATE REDUCTASE genes from subfamily III (OPRIII) modulate key differences in wheat root architecture, which are associated with grain yield under water-limited conditions. Wheat plants with loss-of-function mutations in OPRIII show longer seminal roots, whereas increased OPRIII dosage or transgenic over-expression result in reduced seminal root growth, precocious development of lateral roots and increased jasmonic acid (JA and JA-Ile). Pharmacological inhibition of JA-biosynthesis abolishes root length differences, consistent with a JA-mediated mechanism. Transcriptome analyses of transgenic and wild-type lines show significant enriched JA-biosynthetic and reactive oxygen species (ROS) pathways, which parallel changes in ROS distribution. OPRIII genes provide a useful entry point to engineer root architecture in wheat and other cereals.Fil: Gabay, Gilad. University of California at Davis; Estados UnidosFil: Wang, Hanchao. University of California at Davis; Estados Unidos. University Of Haifa; IsraelFil: Zhang, Junli. University of California at Davis; Estados UnidosFil: Moriconi, Jorge Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Burguener, Germán Federico. University of California at Davis; Estados UnidosFil: Gualano, Leonardo David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Howell, Tyson. University of California at Davis; Estados UnidosFil: Lukaszewski, Adam. University of California; Estados UnidosFil: Staskawicz, Brian. University of California; Estados UnidosFil: Cho, Myeong-Je. University of California; Estados UnidosFil: Tanaka, Jaclyn. University of California; Estados UnidosFil: Fahima, Tzion. University Of Haifa; IsraelFil: Ke, Haiyan. University of California; Estados UnidosFil: Dehesh, Katayoon. University of California; Estados UnidosFil: Zhang, Guo-Liang. Fudan University; ChinaFil: Gou, Jin Ying. Beijing Key Laboratory Of Crop Genetic Improvement; China. Fudan University; ChinaFil: Hamberg, Mats. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Santa Maria, Guillermo Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Dubcovsky, Jorge. University of California at Davis; Estados Unidos. Howard Hughes Medical Institute; Estados Unido

    Supercritical Water-Cooled Reactors

    No full text

    Operation characteristics of a megawatt nuclear power system with high efficiency and compactness

    No full text
    Background A megawatt-class nuclear power system has been developed by coupling a heat pipe reactor with a supercritical carbon dioxide (S-CO2) Brayton cycle. This system offers advantages in terms of high safety, power density, and compactness. Purpose This study aims at the operation characteristics of this power system with high efficiency and compactness. Methods The coupling code of a self-developed heat pipe reactor transient analysis code, Transient Analysis code for heat Pipe and AMTEC power conversion space Reactor power System (TAPIRS), and supercritical carbon dioxide Brayton cycle transient analysis code (SCTRAN/CO2) were utilized to analyze the open-loop dynamic characteristics under conditions of reactivity disturbance, load disturbance, cooling water temperature disturbance, and cooling water mass flowrate disturbance. Then, the control system was designed. On this basis, three load variation operation conditions, i.e., linear load variation, stepped load variation, and load rejection, were simulated and analyzed. Results The simulation results show that the rotational speed of the new nuclear power system is sensitive to the disturbances and needs to be controlled. The bypass flowrate increases under low load conditions, hence the flowrate of the compressor needs to be controlled as well. The system can adjust the load from 0% to 100% at a rate of 6% FP (full power)·min-1. It is capable of implementing stepped load changes, although it experiences slightly more pronounced fluctuations. Under load rejection conditions, the stabilization time might be prolonged, but it will eventually stabilize with all parameters remaining within safe limits. Conclusions This study provides a reference for the conceptual design of new nuclear power systems with high efficiency and compactness

    Implementation and Comparison of High-Resolution Spatial Discretization Schemes for Solving Two-Fluid Seven-Equation Two-Pressure Model

    No full text
    As compared to the two-fluid single-pressure model, the two-fluid seven-equation two-pressure model has been proved to be unconditionally well-posed in all situations, thus existing with a wide range of industrial applications. The classical 1st-order upwind scheme is widely used in existing nuclear system analysis codes such as RELAP5, CATHARE, and TRACE. However, the 1st-order upwind scheme possesses issues of serious numerical diffusion and high truncation error, thus giving rise to the challenge of accurately modeling many nuclear thermal-hydraulics problems such as long term transients. In this paper, a semi-implicit algorithm based on the finite volume method with staggered grids is developed to solve such advanced well-posed two-pressure model. To overcome the challenge from 1st-order upwind scheme, eight high-resolution total variation diminishing (TVD) schemes are implemented in such algorithm to improve spatial accuracy. Then the semi-implicit algorithm with high-resolution TVD schemes is validated on the water faucet test. The numerical results show that the high-resolution semi-implicit algorithm is robust in solving the two-pressure two-fluid two-phase flow model; Superbee scheme and Koren scheme give two highest levels of accuracy while Minmod scheme is the worst one among the eight TVD schemes
    corecore