1,655 research outputs found

    Extreme tunability of interactions in a 7^7Li Bose-Einstein condensate

    Full text link
    We use a Feshbach resonance to tune the scattering length a of a Bose-Einstein condensate of 7Li in the |F = 1, m_F = 1> state. Using the spatial extent of the trapped condensate we extract a over a range spanning 7 decades from small attractive interactions to extremely strong repulsive interactions. The shallow zero-crossing in the wing of the Feshbach resonance enables the determination of a as small as 0.01 Bohr radii. In this regime, evidence of the weak anisotropic magnetic dipole interaction is obtained by comparison with different trap geometries

    Improved approximate inspirals of test-bodies into Kerr black holes

    Full text link
    We present an improved version of the approximate scheme for generating inspirals of test-bodies into a Kerr black hole recently developed by Glampedakis, Hughes and Kennefick. Their original "hybrid" scheme was based on combining exact relativistic expressions for the evolution of the orbital elements (the semi-latus rectum p and eccentricity e) with approximate, weak-field, formula for the energy and angular momentum fluxes, amended by the assumption of constant inclination angle, iota, during the inspiral. Despite the fact that the resulting inspirals were overall well-behaved, certain pathologies remained for orbits in the strong field regime and for orbits which are nearly circular and/or nearly polar. In this paper we eliminate these problems by incorporating an array of improvements in the approximate fluxes. Firstly, we add certain corrections which ensure the correct behaviour of the fluxes in the limit of vanishing eccentricity and/or 90 degrees inclination. Secondly, we use higher order post-Newtonian formulae, adapted for generic orbits. Thirdly, we drop the assumption of constant inclination. Instead, we first evolve the Carter constant by means of an approximate post-Newtonian expression and subsequently extract the evolution of iota. Finally, we improve the evolution of circular orbits by using fits to the angular momentum and inclination evolution determined by Teukolsky based calculations. As an application of the improved scheme we provide a sample of generic Kerr inspirals and for the specific case of nearly circular orbits we locate the critical radius where orbits begin to decircularise under radiation reaction. These easy-to-generate inspirals should become a useful tool for exploring LISA data analysis issues and may ultimately play a role in source detection.Comment: 25 pages, 14 figures, some typos corrected, short section on conservative corrections added, minor changes for consistency with published versio

    Photoassociation of a Bose-Einstein Condensate near a Feshbach Resonance

    Full text link
    We measure the effect of a magnetic Feshbach resonance (FR) on the rate and light-induced frequency shift of a photoassociation resonance in ultracold 7^7Li. The photoassociation-induced loss rate coefficient, KpK_p, depends strongly on magnetic field, varying by more than a factor of 104^4 for fields near the FR. At sufficiently high laser intensities, KpK_p for a thermal gas decreases with increasing intensity, while saturation is observed for the first time in a Bose-Einstein condensate. The frequency shift is also strongly field-dependent and exhibits an anomalous blue-shift for fields just below the FR.Comment: 4 pages, 4 figures. v2: updated comparison with theory; added references; added tick marks to Fig. 1 inset. To be published in Phys. Rev. Letter

    Cooperative effects in nuclear excitation with coherent x-ray light

    Full text link
    The interaction between super-intense coherent x-ray light and nuclei is studied theoretically. One of the main difficulties with driving nuclear transitions arises from the very narrow nuclear excited state widths which limit the coupling between laser and nuclei. In the context of direct laser-nucleus interaction, we consider the nuclear width broadening that occurs when in solid targets, the excitation caused by a single photon is shared by a large number of nuclei, forming a collective excited state. Our results show that for certain isotopes, cooperative effects may lead to an enhancement of the nuclear excited state population by almost two orders of magnitude. Additionally, an update of previous estimates for nuclear excited state population and signal photons taking into account the experimental advances of the x-ray coherent light sources is given. The presented values are an improvement by orders of magnitude and are encouraging for the future prospects of nuclear quantum optics.Comment: 22 pages, 4 figures, 5 tables; updated to the published version, one additional results tabl

    The gravitational-wave memory from eccentric binaries

    Get PDF
    The nonlinear gravitational-wave memory causes a time-varying but nonoscillatory correction to the gravitational-wave polarizations. It arises from gravitational waves that are sourced by gravitational waves. Previous considerations of the nonlinear memory effect have focused on quasicircular binaries. Here, I consider the nonlinear memory from Newtonian orbits with arbitrary eccentricity. Expressions for the waveform polarizations and spin-weighted spherical-harmonic modes are derived for elliptic, hyperbolic, parabolic, and radial orbits. In the hyperbolic, parabolic, and radial cases the nonlinear memory provides a 2.5 post-Newtonian (PN) correction to the leading-order waveforms. This is in contrast to the elliptical and quasicircular cases, where the nonlinear memory corrects the waveform at leading (0PN) order. This difference in PN order arises from the fact that the memory builds up over a short "scattering" time scale in the hyperbolic case, as opposed to a much longer radiation-reaction time scale in the elliptical case. The nonlinear memory corrections presented here complete our knowledge of the leading-order (Peters-Mathews) waveforms for elliptical orbits. These calculations are also relevant for binaries with quasicircular orbits in the present epoch which had, in the past, large eccentricities. Because the nonlinear memory depends sensitively on the past evolution of a binary, I discuss the effect of this early-time eccentricity on the value of the late-time memory in nearly circularized binaries. I also discuss the observability of large "memory jumps" in a binary's past that could arise from its formation in a capture process. Lastly, I provide estimates of the signal-to-noise ratio of the linear and nonlinear memories from hyperbolic and parabolic binaries.Comment: 25 pages, 8 figures. v2: minor changes to match published versio

    Graded extension of SO(2,1) Lie algebra and the search for exact solutions of Dirac equation by point canonical transformations

    Full text link
    SO(2,1) is the symmetry algebra for a class of three-parameter problems that includes the oscillator, Coulomb and Morse potentials as well as other problems at zero energy. All of the potentials in this class can be mapped into the oscillator potential by point canonical transformations. We call this class the "oscillator class". A nontrivial graded extension of SO(2,1) is defined and its realization by two-dimensional matrices of differential operators acting in spinor space is given. It turns out that this graded algebra is the supersymmetry algebra for a class of relativistic potentials that includes the Dirac-Oscillator, Dirac-Coulomb and Dirac-Morse potentials. This class is, in fact, the relativistic extension of the oscillator class. A new point canonical transformation, which is compatible with the relativistic problem, is formulated. It maps all of these relativistic potentials into the Dirac-Oscillator potential.Comment: Replaced with a more potrable PDF versio

    "Kludge" gravitational waveforms for a test-body orbiting a Kerr black hole

    Get PDF
    One of the most exciting potential sources of gravitational waves for low-frequency, space-based gravitational wave (GW) detectors such as the proposed Laser Interferometer Space Antenna (LISA) is the inspiral of compact objects into massive black holes in the centers of galaxies. The detection of waves from such "extreme mass ratio inspiral" systems (EMRIs) and extraction of information from those waves require template waveforms. The systems' extreme mass ratio means that their waveforms can be determined accurately using black hole perturbation theory. Such calculations are computationally very expensive. There is a pressing need for families of approximate waveforms that may be generated cheaply and quickly but which still capture the main features of true waveforms. In this paper, we introduce a family of such "kludge" waveforms and describe ways to generate them. We assess performance of the introduced approximations by comparing "kludge" waveforms to accurate waveforms obtained by solving the Teukolsky equation in the adiabatic limit (neglecting GW backreaction). We find that the kludge waveforms do extremely well at approximating the true gravitational waveform, having overlaps with the Teukolsky waveforms of 95% or higher over most of the parameter space for which comparisons can currently be made. Indeed, we find these kludges to be of such high quality (despite their ease of calculation) that it is possible they may play some role in the final search of LISA data for EMRIs.Comment: 29 pages, 11 figures, requires subeqnarray; v2 contains minor changes for consistency with published versio

    Microscopic Calculation of Total Ordinary Muon Capture Rates for Medium - Weight and Heavy Nuclei

    Full text link
    Total Ordinary Muon Capture (OMC) rates are calculated on the basis of the Quasiparticle Random Phase Approximation for several spherical nuclei from 90^Zr to 208^Pb. It is shown that total OMC rates calculated with the free value of the axial-vector coupling constant g_A agree well with the experimental data for medium-size nuclei and exceed considerably the experimental rates for heavy nuclei. The sensitivity of theoretical OMC rates to the nuclear residual interactions is discussed.Comment: 27 pages and 3 figure

    Quasi-classical path integral approach to supersymmetric quantum mechanics

    Full text link
    {}From Feynman's path integral, we derive quasi-classical quantization rules in supersymmetric quantum mechanics (SUSY-QM). First, we derive a SUSY counterpart of Gutzwiller's formula, from which we obtain the quantization rule of Comtet, Bandrauk and Campbell when SUSY is good. When SUSY is broken, we arrive at a new quantization formula, which is found as good as and even sometime better than the WKB formula in evaluating energy spectra for certain one-dimensional bound state problems. The wave functions in the stationary phase approximation are also derived for SUSY and broken SUSY cases. Insofar as a broken SUSY case is concerned, there are strong indications that the new quasi-classical approximation formula always overestimates the energy eigenvalues while WKB always underestimates.Comment: 13 pages + 5 figures, complete paper submitted as postscript file, to appear in Phys. Rev.

    Spectral properties on a circle with a singularity

    Full text link
    We investigate the spectral and symmetry properties of a quantum particle moving on a circle with a pointlike singularity (or point interaction). We find that, within the U(2) family of the quantum mechanically allowed distinct singularities, a U(1) equivalence (of duality-type) exists, and accordingly the space of distinct spectra is U(1) x [SU(2)/U(1)], topologically a filled torus. We explore the relationship of special subfamilies of the U(2) family to corresponding symmetries, and identify the singularities that admit an N = 2 supersymmetry. Subfamilies that are distinguished in the spectral properties or the WKB exactness are also pointed out. The spectral and symmetry properties are also studied in the context of the circle with two singularities, which provides a useful scheme to discuss the symmetry properties on a general basis.Comment: TeX, 26 pages. v2: one reference added and two update
    • …
    corecore