15 research outputs found

    Angiopoietin-4 inhibits angiogenesis and reduces interstitial fluid pressure

    Get PDF
    AbstractAngiopoietins (Ang) are involved in the remodeling, maturation, and stabilization of the vascular network. Ang-4 was discovered more recently; thus, its effect on angiogenesis and its interplay with other angiogenic factors have not been equivocally established. The role of Ang-4 in angiogenesis was tested in Matrigel chambers implanted into the subcutaneous space of nude mice. Ang-4 inhibited the angiogenic response of basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), and GLC19 tumor cells. In Matrigel chambers with Ang-4-transfected cells, the mean response was significantly lower than that of mock cells. Subcutaneous tumor interstitial fluid pressure (IFP) was significantly lower in Ang-4-transfected GLC19 tumors than in mock-transfected tumors. IFP reduction in Ang-4-transfected tumors was comparable to the reduction seen after bevacizumab treatment. In vitro, we examined the effect of recombinant Ang-4 on endothelial cell migration in Boyden chambers. Human umbilical vein endothelial cell (HUVEC) migration induced by bFGF and VEGF was inhibited by Ang-4 to control levels. In conclusion, we show that rhAng-4, as well as transfection with Ang-4, inhibits angiogenesis induced by GLC19 tumor cells and that Ang-4 expression reduces elevated tumor IFP. In addition, we demonstrate that rhAng-4 inhibits HUVEC migration and growth factor-induced angiogenesis

    Osteopontin deficiency dampens the pro-atherogenic effect of uraemia

    No full text
    Uraemia is a strong risk factor for cardiovascular disease. Osteopontin (OPN) is highly expressed in aortas of uraemic apolipoprotein E knockout (E KO) mice. OPN affects key atherogenic processes, i.e. inflammation and phenotypic modulation of smooth muscle cells (SMCs). We explored the role of OPN on vascular pathology in uraemic mice. Uraemia was induced by 5/6 nephrectomy in E KO and in OPN and E double KO mice (E/OPN KO). In E KO mice, uraemia increased the relative surface plaque area in the aortic arch (from 28 2 [n 15], to 37 3 [n 20] of the aortic arch area, P 0.05). A positive correlation was observed between plasma OPN and aortic atherosclerosis in uraemic E KO mice (r(2) 0.48, P 0.001). In contrast, aortic atherosclerosis was not increased by uraemia in E/OPN KO mice. OPN deficiency in haematopoietic cells (including macrophages) did not affect development of uraemic atherosclerosis, even though OPN-deficient foam cells had decreased inflammatory capacity. Gene expression analyses indicated that uraemia de-differentiates SMCs in the arterial wall. This effect was dampened in whole-body OPN-deficient mice. The data suggest that OPN promotes development of uraemic atherosclerosis possibly by changing the phenotype of vascular smooth muscle cells
    corecore