14 research outputs found

    Characterization of the ADA/GCN5 transcriptional adaptor complex

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, 1997.Includes bibliographical references.by Junjiro Horiuchi.Ph.D

    Long-Term Memory Engram Cells Are Established by c-Fos/CREB Transcriptional Cycling

    No full text
    Summary: Training-dependent increases in c-fos have been used to identify engram cells encoding long-term memories (LTMs). However, the interaction between transcription factors required for LTM, including CREB and c-Fos, and activating kinases such as phosphorylated ERK (pERK) in the establishment of memory engrams has been unclear. Formation of LTM of an aversive olfactory association in flies requires repeated training trials with rest intervals between trainings. Here, we find that prolonged rest interval-dependent increases in pERK induce transcriptional cycling between c-Fos and CREB in a subset of KCs in the mushroom bodies, where olfactory associations are made and stored. Preexisting CREB is required for initial c-fos induction, while c-Fos is required later to increase CREB expression. Blocking or activating c-fos-positive engram neurons inhibits memory recall or induces memory-associated behaviors. Our results suggest that c-Fos/CREB cycling defines LTM engram cells required for LTM. : Long-term memory (LTM) requires transcription factors, including CREB and c-Fos. Miyashita et al. show that spaced training, which induces LTM, activates c-Fos/CREB cycling, where increases in c-Fos require CREB and increases in CREB require c-Fos. c-Fos/CREB cycling defines LTM engram cells, and modulating the activity of these cells alters memory-associated behaviors. Keywords: long-term memory, CREB, c-fos, spacing effect, MAPK, Drosophila, memory engram, transcriptional cyclin

    ADA5/SPT20 links the ADA and SPT genes, which are involved in yeast transcription

    No full text
    In this report we described the cloning and characterization of ADA5, a gene identified by resistance to GAL4-VP16-mediated toxicity. ADA5 binds directly to the VP16 activation domain but not to a transcriptionally defective VP16 double point mutant. Double mutants with mutations in ada5 and other genes (ada2 or ada3) isolated by resistance to GAL4-VP16 grow like ada5 single mutants, suggesting that ADA5 is in the same pathway as the other ADA genes. Further, ADA5 cofractionates and coprecipitates with ADA3. However, an ada5 deletion mutant exhibits a broader spectrum of phenotypes than mutants with null mutations in the other ADA genes. Most interestingly, ADA5 is identical to SPT20 (S.M. Roberts and F. Winston, Mol. Cell. Biol. 16: 3206-3213, 1996), showing that it shares phenotypes with the ADA and SPT family of genes. Of the other SPT genes tested, mutants with mutations in SPT7 and, strikingly, SPT15 (encoding the TATA-binding protein) show resistance to GAL4-VP16. We present a speculative pathway of transcriptional activation involving the ADA2-ADA3-GCN5-ADA5 complex and the TATA-binding protein

    Two Parallel Pathways Assign Opposing Odor Valences during Drosophila Memory Formation

    No full text
    Summary: During olfactory associative learning in Drosophila, odors activate specific subsets of intrinsic mushroom body (MB) neurons. Coincident exposure to either rewards or punishments is thought to activate extrinsic dopaminergic neurons, which modulate synaptic connections between odor-encoding MB neurons and MB output neurons to alter behaviors. However, here we identify two classes of intrinsic MB γ neurons based on cAMP response element (CRE)-dependent expression, γCRE-p and γCRE-n, which encode aversive and appetitive valences. γCRE-p and γCRE-n neurons act antagonistically to maintain neutral valences for neutral odors. Activation or inhibition of either cell type upsets this balance, toggling odor preferences to either positive or negative values. The mushroom body output neurons, MBON-γ5β′2a/β′2mp and MBON-γ2α′1, mediate the actions of γCRE-p and γCRE-n neurons. Our data indicate that MB neurons encode valence information, as well as odor information, and this information is integrated through a process involving MBONs to regulate learning and memory. : Aversive and appetitive olfactory memories in fruit flies are formed in third order olfactory neurons, the mushroom body Kenyon cells (KCs). Yamazaki et al. identify parallel pathways consisting of two subpopulations of KCs and their output neurons that encode aversive and appetitive valences. Keywords: Drosophila, olfactory memory, γCRE-p neurons, γCRE-n neurons, valences, mutual inhibition, MBON-γ5β′2a/β′2mp, MBON-γ2α′

    Shifting transcriptional machinery is required for long-term memory maintenance and modification in Drosophila mushroom bodies

    Get PDF
    Accumulating evidence suggests that transcriptional regulation is required for maintenance of long-term memories (LTMs). Here we characterize global transcriptional and epigenetic changes that occur during LTM storage in the Drosophila mushroom bodies (MBs), structures important for memory. Although LTM formation requires the CREB transcription factor and its coactivator, CBP, subsequent early maintenance requires CREB and a different coactivator, CRTC. Late maintenance becomes CREB independent and instead requires the transcription factor Bx. Bx expression initially depends on CREB/CRTC activity, but later becomes CREB/CRTC independent. The timing of the CREB/CRTC early maintenance phase correlates with the time window for LTM extinction and we identify different subsets of CREB/CRTC target genes that are required for memory maintenance and extinction. Furthermore, we find that prolonging CREB/CRTC-dependent transcription extends the time window for LTM extinction. Our results demonstrate the dynamic nature of stored memory and its regulation by shifting transcription systems in the MBs
    corecore