262 research outputs found

    Deflection in higher dimensional spacetime and asymptotically non-flat spacetimes

    Full text link
    Using a perturbative technique, in this work we study the deflection of null and timelike signals in the extended Einstein-Maxwell spacetime, the Born-Infeld gravity and the charged Ellis-Bronnikov (CEB) spacetime in the weak field limit. The deflection angles are found to take a (quasi-)series form of the impact parameter, and automatically takes into account the finite distance effect of the source and observer. The method is also applied to find the deflections in CEB spacetime with arbitrary dimension. It's shown that to the leading non-trivial order, the deflection in some nn-dimensional spacetimes is of the order O(M/b)n3\mathcal{O}(M/b)^{n-3}. We then extended the method to spacetimes that are asymptotically non-flat and studied the deflection in a nonlinear electrodynamical scalar theory. The deflection angle in such asymptotically non-flat spacetimes at the trivial order is found to be not π\pi anymore. In all these cases, the perturbative deflection angles are shown to agree with numerical results extremely well. The effects of some nontrivial spacetime parameters as well as the signal velocity on the deflection angles are analyzed.Comment: 30 pages, 7 figures; title modified; to match published version in Class.Quant.Gra

    Morphologies and elemental compositions of local biomass burning particles at urban and glacier sites in southeastern Tibetan Plateau: Results from an expedition in 2010

    Get PDF
    Many studies indicate that the atmospheric environment over the southern part of the Tibetan Plateau is influenced by aged biomass burning particles that are transported over long distances from South Asia. However, our knowledge of the particles emitted locally (within the plateau region) is poor. We collected aerosol particles at four urban sites and one remote glacier site during a scientific expedition to the southeastern Tibetan Plateau in spring 2010. Weather and backward trajectory analyses indicated that the particles we collected were more likely dominated by particles emitted within the plateau. The particles were examined using an electron microscope and identified according to their sizes, shapes and elemental compositions. At three urban sites where the anthropogenic particles were produced mainly by the burning of firewood, soot aggregates were in the majority and made up >40% of the particles by number. At Lhasa, the largest city on the Tibetan Plateau, tar balls and mineral particles were also frequently observed because of the use of coal and natural gas, in addition to biofuel. In contrast, at the glacier site, large numbers of chain-like soot aggregates (similar to 25% by number) were noted. The morphologies of these aggregates were similar to those of freshly emitted ones at the urban sites: moreover, physically or chemically processed ageing was rarely confirmed. These limited observations suggest that the biomass burning particles age slowly in the cold, dry plateau air. Anthropogenic particles emitted locally within the elevated plateau region may thus affect the environment within glaciated areas in Tibet differently than anthropogenic particles transported from South Asia. (C) 2018 Elsevier B.V. All rights reserved

    Pyrene-cored blue-light emitting [4]helicenes: synthesis, crystal structures, and photophysical properties

    Get PDF
    The synthesis, crystal structures and photophysical properties of two types of pyrene-cored blue-light emitting [4]helicenes are reported, in which two naphthalene rings of condensed pyrenes were constructed resulting in helical architectures. The photophysical properties and electrochemical characteristics of these pyrene-cored [4]helicenes were fully investigated in both solutions and films, along with that of the pre-cyclization Q4 products, 4,9- and 4,10-(phenylethenyl)pyrenes

    Photochromic Fluorescent Probe Strategy for the Super-resolution Imaging of Biologically Important Biomarkers

    Get PDF
    Here, we report a β-galactosidase (β-Gal)-responsive photochromic fluorescent probe, NpG, that was designed to prebind to human serum albumin (HSA) to form the probe/protein hybrid, NpG@HSA. The formation of NpG@HSA led to an increase in fluorescence emission (520 nm) corresponding to the binding of the fluorescent naphthalimide unit with HSA. In addition, this enabled visualization of the spiropyran fluorescence emission in aqueous media. Our probe/protein hybrid approach afforded a unique imaging platform with enhanced cell permeability and solubility that was capable of visualizing the cellular uptake of NpG@HSA before its activation by β-Gal. The β-Gal-mediated cleavage of the galactose unit within the NpG@HSA hybrid resulted in the formation of NpM@HSA and an increase in red fluorescence emission (620 nm). The resultant merocyanine unit was then able to undergo photoisomerization (merocyanine ↔ spiropyran) to facilitate STORM (i.e., stochastic optical reconstruction microscopy) imaging with minimal phototoxicity and excellent photostability/reversibility. Using STORM, NpG@HSA was able to determine the subcellular distribution of β-Gal activity between cell lines with nanoscale precision. We believe that this system represents a versatile imaging platform for the design of photochromic fluorescent probes suitable for illuminating the precise location of disease-specific biomarkers in various cellular processes.</p

    Mitigating NO_x emissions does not help alleviate wintertime particulate pollution in Beijing-Tianjin-Hebei (BTH), China

    Get PDF
    Stringent mitigation measures have reduced wintertime PM_(2.5) concentrations by 42.2% from 2013 to 2018 in the BTH. The observed nitrate aerosols have not exhibited a significant decreasing trend and constituted a major fraction (about 20%) of the total PM_(2.5), although the surface-measured NO₂ level has decreased by over 20%. It still remains elusive about contributions of nitrogen oxides (NO_x) emissions mitigation to the nitrate and PM_(2.5) level. The WRF-Chem model simulations of a persistent haze episode in January 2019 in the BTH reveal that NO_x emissions mitigation does not help lower wintertime nitrate and PM_(2.5) concentrations under current conditions in the BTH, because the substantial O₃ increase induced by NO_x mitigation offsets the HNO₃ loss and enhances sulfate and secondary organic aerosols formation. Our results are further consolidated by occurrence of the severe PM pollution in the BTH during the COVID-19 outbreak with a significant reduction of NO₂

    Identification of two rare NPRL3 variants in two Chinese families with familial focal epilepsy with variable foci 3: NGS analysis with literature review

    Get PDF
    Background: The GAP Activity Towards Rags 1 (GATOR1) complex, which includes DEPDC5, NPRL2, and NPRL3, plays a key role in epilepsy. It has been reported that focal epilepsy is associated with mutations in the NPRL3 gene in some cases. We report two rare mutations in the NPRL3 gene in two unrelated Chinese families with focal epilepsy in this study.Methods: The proband and her brother in family E1 first experienced seizures at 1.5 and 6 years of age, respectively. Despite resection of epileptogenic foci, she still suffered recurrent seizures. The first seizure of a 20-year-old male proband in family E2 occurred when he was 2 years old. To identify pathogenic variants in these families, whole-exome sequencing (WES) was performed on genomic DNA from peripheral blood.Results: In family E1, the trio-WES analysis of the proband and her brother without apparent structural brain abnormalities identified a heterozygous variant in the NPRL3 gene (c.954C&gt;A, p.Y318*, NM_001077350.3). In family E2, the proband carried a heterozygous NPRL3 mutation (c.1545-1G&gt;C, NM_001077350.3). Surprisingly, the mothers of the two probands each carried the variants, but neither had an attack. Bioinformatics analysis predicted that the mutation (c.954C&gt;A) was in the highly conserved amino acid residues of NPRL3, which affected the α-helix of NPRL3 protein, leading to a truncated protein. The splice variant (c.1545-1G&gt;C) resulted in the loss of the last exon of the NPRL3 gene.Conclusion: The results of this study provide a foundation for diagnosing NPRL3-related epilepsy by enriching their genotypes and phenotypes and help us identify the genetic etiologies of epilepsy in these two families

    Mitigating NO_x emissions does not help alleviate wintertime particulate pollution in Beijing-Tianjin-Hebei (BTH), China

    Get PDF
    Stringent mitigation measures have reduced wintertime PM_(2.5) concentrations by 42.2% from 2013 to 2018 in the BTH. The observed nitrate aerosols have not exhibited a significant decreasing trend and constituted a major fraction (about 20%) of the total PM_(2.5), although the surface-measured NO₂ level has decreased by over 20%. It still remains elusive about contributions of nitrogen oxides (NO_x) emissions mitigation to the nitrate and PM_(2.5) level. The WRF-Chem model simulations of a persistent haze episode in January 2019 in the BTH reveal that NO_x emissions mitigation does not help lower wintertime nitrate and PM_(2.5) concentrations under current conditions in the BTH, because the substantial O₃ increase induced by NO_x mitigation offsets the HNO₃ loss and enhances sulfate and secondary organic aerosols formation. Our results are further consolidated by occurrence of the severe PM pollution in the BTH during the COVID-19 outbreak with a significant reduction of NO₂

    Freeze-Fracture Replica Immunolabelling Reveals Urothelial Plaques in Cultured Urothelial Cells

    Get PDF
    The primary function of the urothelium is to provide the tightest and most impermeable barrier in the body, i.e. the blood-urine barrier. Urothelial plaques are formed and inserted into the apical plasma membrane during advanced stages of urothelial cell differentiation. Currently, it is supposed that differentiation with the final formation of urothelial plaques is hindered in cultured urothelial cells. With the aid of the high-resolution imaging technique of freeze-fracture replica immunolabelling, we here provide evidence that urothelial cells in vitro form uroplakin-positive urothelial plaques, localized in fusiform-shaped vesicles and apical plasma membranes. With the establishment of such an in vitro model of urothelial cells with fully developed urothelial plaques and functional properties equivalent to normal bladder urothelium, new perspectives have emerged which challenge prevailing concepts of apical plasma membrane biogenesis and blood-urine barrier development. This may hopefully provide a timely impulse for many ongoing studies and open up new questions for future research

    Roadmap on chalcogenide photonics

    Get PDF
    Alloys of sulfur, selenium and tellurium, often referred to as chalcogenide semiconductors, offer a highly versatile, compositionally-controllable material platform for a variety of passive and active photonic applications. They are optically nonlinear, photoconductive materials with wide transmission windows that present various high- and low-index dielectric, low-epsilon and plasmonic properties across ultra-violet, visible and infrared frequencies, in addition to an, non-volatile, electrically/optically induced switching capability between phase states with markedly different electromagnetic properties. This roadmap collection presents an in-depth account of the critical role that chalcogenide semiconductors play within various traditional and emerging photonic technology platforms. The potential of this field going forward is demonstrated by presenting context and outlook on selected socio-economically important research streams utilizing chalcogenide semiconductors. To this end, this roadmap encompasses selected topics that range from systematic design of material properties and switching kinetics to device-level nanostructuring and integration within various photonic system architectures

    In Vivo Tracking of Transplanted Mononuclear Cells Using Manganese-Enhanced Magnetic Resonance Imaging (MEMRI)

    Get PDF
    BACKGROUND: Transplantation of mononuclear cells (MNCs) has previously been tested as a method to induce therapeutic angiogenesis to treat limb ischemia in clinical trials. Non-invasive high resolution imaging is required to track the cells and evaluate clinical relevance after cell transplantation. The hypothesis that MRI can provide in vivo detection and long-term observation of MNCs labeled with manganese contrast-agent was investigated in ischemic rat legs. METHODS AND FINDINGS: The Mn-labeled MNCs were evaluated using 7-tesla high-field magnetic resonance imaging (MRI). Intramuscular transplanted Mn-labeled MNCs were visualized with MRI for at least 7 and up to 21 days after transplantation in the ischemic leg. The distribution of Mn-labeled MNCs was similar to that of ¹¹¹In-labeled MNCs measured with single-photon emission computed tomography (SPECT) and DiI-dyed MNCs with fluorescence microscopy. In addition, at 1-2 days after transplantation the volume of the site injected with intact Mn-labeled MNCs was significantly larger than that injected with dead MNCs, although the dead Mn-labeled MNCs were also found for approximately 2 weeks in the ischemic legs. The area covered by CD31-positive cells (as a marker of capillary endothelial cells) in the intact Mn-MNCs implanted site at 43 days was significantly larger than that at a site implanted with dead Mn-MNCs. CONCLUSIONS: The present Mn-enhanced MRI method enabled visualization of the transplanted area with a 150-175 µm in-plane spatial resolution and allowed the migration of labeled-MNCs to be observed for long periods in the same subject. After further optimization, MRI-based Mn-enhanced cell-tracking could be a useful technique for evaluation of cell therapy both in research and clinical applications
    corecore