39 research outputs found

    Combination cryosurgery with hyperthermia in the management of skin metastasis from breast cancer: a case report

    Get PDF
    Introduction: Skin metastases may impair the quality of life due to physical appearance, odour, and bleeding. Presentation of Case: A 70-year-old woman presented with two enlarging nodules (measuring 12 cm and 3 cm in diameter) consistent with metastatic breast cancer in the left subclavicular area. The larger tumour did not respond to initial cryosurgery. Therefore we added hyperthermia using a disposable body warmer. In addition, the cryosurgery technique was modified to freeze deeper tissue. The entire tumour was covered with dry cotton, to which liquid nitrogen was applied. Twenty weeks later, the tumour became nearly flat and the patient noted improved activity in her daily life. Discussion: Combination treatment with sufficient freezing is important for controlling the tumour, while hyperthermia may accelerate the antitumor effects of cryosurgery. Conclusion: This treatment provides an alternative for unresectable breast cancer skin metastases resistant to chemotherapy and radiotherapy

    Successful Treatment of Epidermal Growth Factor Receptor Inhibitor-Induced Periungual Inflammation with Adapalene

    Get PDF
    Epidermal growth factor receptor (EGFR) inhibitors are increasingly used for cancer treatment, but commonly carry dermatologic side effects. Periungual inflammation is a particularly painful condition that additionally worsens quality of life. In this paper, we report 3 cases of successful treatment of periungual inflammation induced by 3 different EGFR inhibitors (gefitinib, erlotinib, and cetuximab) with topically applied adapalene

    Selective-cold output through a distinct subset of lamina I spinoparabrachial neurons

    Get PDF
    Spinal projection neurons are a major pathway through which somatic stimuli are conveyed to the brain. However, the manner in which this information is coded is poorly understood. Here, we report the identification of a modality-selective spinoparabrachial (SPB) neuron subtype with unique properties. Specifically, we find that cold-selective SPB neurons are differentiated by selective afferent input, reduced sensitivity to substance P, distinct physiological properties, small soma size, and low basal drive. In addition, optogenetic experiments reveal that cold-selective SPB neurons do not receive input from Nos1 inhibitory interneurons and, compared with other SPB neurons, show significantly smaller inhibitory postsynaptic currents upon activation of Pdyn inhibitory interneurons. Together, these data suggest that cold output from the spinal cord to the parabrachial nucleus is mediated by a specific cell type with distinct properties

    Conversion of Sox2-dependent Merkel cell carcinoma to a differentiated neuron-like phenotype by T antigen inhibition

    Get PDF
    Viral cancers show oncogene addiction to viral oncoproteins, which are required for survival and proliferation of the dedifferentiated cancer cell. Human Merkel cell carcinomas (MCCs) that harbor a clonally integrated Merkel cell polyomavirus (MCV) genome have low mutation burden and require viral T antigen expression for tumor growth. Here, we showed that MCV+ MCC cells cocultured with keratinocytes undergo neuron-like differentiation with neurite outgrowth, secretory vesicle accumulation, and the generation of sodium-dependent action potentials, hallmarks of a neuronal cell lineage. Cocultured keratinocytes are essential for induction of the neuronal phenotype. Keratinocyte-conditioned medium was insufficient to induce this phenotype. Single-cell RNA sequencing revealed that T antigen knockdown inhibited cell cycle gene expression and reduced expression of key Merkel cell lineage/MCC marker genes, including HES6, SOX2, ATOH1, and KRT20. Of these, T antigen knockdown directly inhibited Sox2 and Atoh1 expression. MCV large T up-regulated Sox2 through its retinoblastoma protein-inhibition domain, which in turn activated Atoh1 expression. The knockdown of Sox2 in MCV+ MCCs mimicked T antigen knockdown by inducing MCC cell growth arrest and neuron-like differentiation. These results show Sox2-dependent conversion of an undifferentiated, aggressive cancer cell to a differentiated neuron-like phenotype and suggest that the ontology of MCC arises from a neuronal cell precursor

    Parallel ascending spinal pathways for affective touch and pain

    Get PDF
    The anterolateral pathway consists of ascending spinal tracts that convey pain, temperature and touch information from the spinal cord to the brain1,2,3,4. Projection neurons of the anterolateral pathway are attractive therapeutic targets for pain treatment because nociceptive signals emanating from the periphery are channelled through these spinal projection neurons en route to the brain. However, the organizational logic of the anterolateral pathway remains poorly understood. Here we show that two populations of projection neurons that express the structurally related G-protein-coupled receptors (GPCRs) TACR1 and GPR83 form parallel ascending circuit modules that cooperate to convey thermal, tactile and noxious cutaneous signals from the spinal cord to the lateral parabrachial nucleus of the pons. Within this nucleus, axons of spinoparabrachial (SPB) neurons that express Tacr1 or Gpr83 innervate distinct sets of subnuclei, and strong optogenetic stimulation of the axon terminals induces distinct escape behaviours and autonomic responses. Moreover, SPB neurons that express Gpr83 are highly sensitive to cutaneous mechanical stimuli and receive strong synaptic inputs from both high- and low-threshold primary mechanosensory neurons. Notably, the valence associated with activation of SPB neurons that express Gpr83 can be either positive or negative, depending on stimulus intensity. These findings reveal anatomically, physiologically and functionally distinct subdivisions of the SPB tract that underlie affective aspects of touch and pain

    Understanding the switch from pain-to-itch in dermatitis

    No full text
    No abstract available

    Spinal microcircuits and the regulation of itch

    No full text
    No abstract available

    Itch and neuropathic itch

    No full text
    Neuropathic itch is a pathological condition that is due to damage within the nervous system. This type of itch can be severe and unrelenting, which has a very negative impact on quality of life. Neuropathic itch is more common than generally appreciated because most types of neuropathic pain have a neuropathic itch counterpart. Unfortunately, much like neuropathic pain, there is a lack of effective treatments for neuropathic itch. Here, we consider the neural basis of itch and then describe how injuries within these neural circuits can lead to neuropathic itch in both animal models and human disease states

    Small RNAs, but sizable itch: TRPA1 activation by an extracellular microRNA

    No full text
    No abstract available

    Responsiveness of C neurons in rat dorsal root ganglion to 5-hydroxytryptamine-induced pruritic stimuli in vivo

    No full text
    Itching is a common symptom in dermatologic diseases and causes restless scratching of the skin, which aggravates the condition. The mechanism of the itch sensation, however, is enigmatic. The present study included behavioral tests and electrophysiological recordings from rat dorsal root ganglion (DRG) neurons in vivo to analyze the response to pruritic stimuli induced by topical application of 5-hydroxytryptamine (5-HT) to the skin. Topically applied 5-HT to the rostral back evoked scratching, whereas application of the vehicle did not. Following subcutaneous injection of the opioid receptor antagonist naloxone, the number of scratches decreased, suggesting that the scratching was preferentially mediated by itch but not pain sensation. To elucidate the firing properties of DRG neurons in response to topically applied 5-HT, intracellular recordings were made from DRG neurons in vivo. None of the Aβ and Aδ neurons responded to 5-HT; in contrast, 25 of 91 C neurons (27%) exhibited repetitive firing in response to 5-HT, which could be classified into two firing patterns: one was a transient type, characterized by low firing frequency that decreased within 5 min; the other was a long-lasting type, having high firing frequency that continued increasing after 5 min. The time course of the firing pattern of long-lasting C neurons was comparable to the scratching behavior. Intriguingly, the long-lasting-type neurons had a significantly smaller fast afterhyperpolarization than that of the 5-HT-insensitive neurons. These observations suggest that the long-lasting-firing C neurons in rat DRG sensitive to 5-HT are responsible for conveying pruritic information to the spinal cord
    corecore