45 research outputs found

    Mechanism Analysis and Dynamics Simulation of Assist Manipulator

    Get PDF
    In order to reduce labour intensity and improve working efficiency, a kind of assist manipulator was designed which is an auxiliary tool used for the assembly line of the marine diesel engine that can conveniently realize the delivery of parts and field assembly. Motion and force analysis of the mechanism of assist manipulator was examined with the help of MATLAB software on the base of d\u27Alembert principle, the disciplinary of displacement, velocity, acceleration, and force rules in the process of mechanism movement was obtained by mechanical analysis. Based on the kinematical analysis, the parameters of mechanism size were optimized to improve the loading state. The Creo software, ANSYS software, and RecurDyn software were used to model and analyse the rigid-flexible coupling dynamics of the manipulator, and the motion law and stress distribution of the key components was obtained

    Bilevel Traffic Evacuation Model and Algorithm Design for Large-Scale Activities

    Get PDF
    This paper establishes a bilevel planning model with one master and multiple slaves to solve traffic evacuation problems. The minimum evacuation network saturation and shortest evacuation time are used as the objective functions for the upper- and lower-level models, respectively. The optimizing conditions of this model are also analyzed. An improved particle swarm optimization (PSO) method is proposed by introducing an electromagnetism-like mechanism to solve the bilevel model and enhance its convergence efficiency. A case study is carried out using the Nanjing Olympic Sports Center. The results indicate that, for large-scale activities, the average evacuation time of the classic model is shorter but the road saturation distribution is more uneven. Thus, the overall evacuation efficiency of the network is not high. For induced emergencies, the evacuation time of the bilevel planning model is shortened. When the audience arrival rate is increased from 50% to 100%, the evacuation time is shortened from 22% to 35%, indicating that the optimization effect of the bilevel planning model is more effective compared to the classic model. Therefore, the model and algorithm presented in this paper can provide a theoretical basis for the traffic-induced evacuation decision making of large-scale activities

    Cross-session Emotion Recognition by Joint Label-common and Label-specific EEG Features Exploration

    Get PDF
    Since Electroencephalogram (EEG) is resistant to camouflage, it has been a reliable data source for objective emotion recognition. EEG is naturally multi-rhythm and multi-channel, based on which we can extract multiple features for further processing. In EEG-based emotion recognition, it is important to investigate whether there exist some common features shared by different emotional states, and the specific features associated with each emotional state. However, such fundamental problem is ignored by most of the existing studies. To this end, we propose a Joint label-Common and label-Specific Features Exploration (JCSFE) model for semi-supervised cross-session EEG emotion recognition in this paper. To be specific, JCSFE imposes the β„“ 2,1 -norm on the projection matrix to explore the label-common EEG features and simultaneously the β„“ 1 -norm is used to explore the label-specific EEG features. Besides, a graph regularization term is introduced to enforce the data local invariance property, i.e ., similar EEG samples are encouraged to have the same emotional state. Results obtained from the SEED-IV and SEED-V emotional data sets experimentally demonstrate that JCSFE not only achieves superior emotion recognition performance in comparison with the state-of-the-art models but also provides us with a quantitative method to identify the label-common and label-specific EEG features in emotion recognition

    Huangqi Injection (a Traditional Chinese Patent Medicine) for Chronic Heart Failure: A Systematic Review

    Get PDF
    Chronic heart failure (CHF) is a global public health problem. Therefore, novel and effective drugs that show few side-effects are needed. Early literature studies indicated that Huangqi injection is one of the most commonly used traditional Chinese patent medicines for CHF in China. As a large number of clinical studies has been carried out and published, it is essential to evaluate the effectiveness and safety of Huangqi injection. Therefore, we carried out this systematic review under the support of the framework of the Joint Sino-Italian Laboratory (JoSIL).To evaluate the efficacy and safety of Huangqi injection for CHF according to the available scientific knowledge.An extensive search including PubMed, EMBASE, CBM, the Cochrane Library and Chinese literature databases was performed up to July 2008. Clinical trials regarding Huangqi injection for the treatment of CHF were searched for, irrespective of languages. The quality of each trial was assessed according to the Cochrane Reviewers' Handbook 5.0, and RevMan 5.0 provided by the Cochrane Collaboration and STATA 9.2 were used for data analysis.After selection of 1,205 articles, 62 RCTs and quasi-RCTs conducted in China and published in Chinese journals were included in the review. The methodological quality of the trials was low. In most trials inclusion and exclusion criteria were not specified. Furthermore, only one study evaluated the outcomes for drug efficacy after an adequate period of time. For these reasons and because of the different baseline characteristics we did not conduct a meta-analysis.Although available studies are not adequate to draw a conclusion on the efficacy and safety of Huangqi injection (a traditional Chinese patent medicine), we hope that our work could provide useful experience on further studies on Huangqi injections. The overall level of TCM clinical research needs to be improved so that the efficacy of TCM can be evaluated by the international community and possibly some TCM can enter into the international market

    Research on Wave Attenuation Performance of Floating Breakwater

    No full text
    In this study, a new type of double-pontoon floating breakwater was designed to improve the wave attenuation performance through the addition of suspended Savonius propeller-blade. Its hydrodynamic characteristics were studied through numerical simulations and performance-testing experiment. The following investigations were performed in this study: Firstly, wave theory and hydrodynamic theory were combined to calculate the wave attenuation performance and motion response of double-pontoon floating breakwater under linear wave conditions. The numerical results showed that the wave attenuation performance was better under a specific wave period and height, the transmission coefficient reached a relatively small value, and the mooring line tension responded periodically and satisfied the condition of maximum breaking force. Secondly, three key geometric parameters of breakwater were researched, including the relative spacing of pontoons, the relative spacing between pontoons and blades, and the height–diameter ratio of Savonius blades. The calculation results showed that the pontoon spacing was closer to the wavelength and the breakwater wave attenuation performance was better. Lastly, experimental tests were also performed on the new double-pontoon floating breakwater and the results showed that the wave attenuation performance and numerical projections were basically the same, which verified the validity and effectiveness of the design method

    Research on Wave Attenuation Performance of Floating Breakwater

    No full text
    In this study, a new type of double-pontoon floating breakwater was designed to improve the wave attenuation performance through the addition of suspended Savonius propeller-blade. Its hydrodynamic characteristics were studied through numerical simulations and performance-testing experiment. The following investigations were performed in this study: Firstly, wave theory and hydrodynamic theory were combined to calculate the wave attenuation performance and motion response of double-pontoon floating breakwater under linear wave conditions. The numerical results showed that the wave attenuation performance was better under a specific wave period and height, the transmission coefficient reached a relatively small value, and the mooring line tension responded periodically and satisfied the condition of maximum breaking force. Secondly, three key geometric parameters of breakwater were researched, including the relative spacing of pontoons, the relative spacing between pontoons and blades, and the height–diameter ratio of Savonius blades. The calculation results showed that the pontoon spacing was closer to the wavelength and the breakwater wave attenuation performance was better. Lastly, experimental tests were also performed on the new double-pontoon floating breakwater and the results showed that the wave attenuation performance and numerical projections were basically the same, which verified the validity and effectiveness of the design method

    Research on Solidity of Horizontal-Axis Tidal Current Turbine

    No full text
    In this paper, the blade solidity of the tidal current turbine was investigated. Based on the blade element momentum theory, different design flow velocities were selected to design two blade types with different solidities. The geometric parameters of the blade were calculated using MATLAB programming, and the performance of two blades was compared in terms of the start-up flow rate, power generation and thrust by test experiment, which showed that the blade with higher solidity has better start-up performance and higher energy capture efficiency at low flow rates. The performance is better than that of the blade with low solidity, but due to the high solidity, the thrust is also high, which should be taken into account when installing the turbine

    Research on Performance Evaluation of Tidal Energy Turbine under Variable Velocity

    No full text
    Aiming at the performance evaluation problem of tidal energy turbines in the application of periodic time-varying flow velocity, with the goal of maximizing the efficiency of energy harvesting in practical applications, an evaluation system combining the characteristics of flow velocity changes in practical applications is proposed. After long-term monitoring of tidal current flow velocity in the applied sea area, the actual measured tidal current periodic flow velocity is divided into several flow velocity segments by using statistical segmentation, and the evaluation flow velocity of each flow velocity segment and its time proportion in the tidal current cycle are obtained. A test device with constant torque regulation is built, and capture power tests of different torque loads are carried out under each evaluation flow rate. After comparison, the maximum captured power at each evaluation flow rate is determined. We calculate the weight based on the time proportion of each evaluation flow velocity and obtain the turbine average power of the tidal cycle, thereby evaluating the overall energy capture performance of the turbine under the periodic time-varying flow velocity. Finally, the application test of the turbine in the actual sea area shows that the thin-walled airfoil turbine is more suitable for the sea area, which is the same as the pool evaluation result. The result shows that the evaluation system is reliable and effective and has significance for guiding practical engineering
    corecore