69 research outputs found

    Knowledge-Based Reconstruction of mRNA Transcripts with Short Sequencing Reads for Transcriptome Research

    Get PDF
    While most transcriptome analyses in high-throughput clinical studies focus on gene level expression, the existence of alternative isoforms of gene transcripts is a major source of the diversity in the biological functionalities of the human genome. It is, therefore, essential to annotate isoforms of gene transcripts for genome-wide transcriptome studies. Recently developed mRNA sequencing technology presents an unprecedented opportunity to discover new forms of transcripts, and at the same time brings bioinformatic challenges due to its short read length and incomplete coverage for the transcripts. In this work, we proposed a computational approach to reconstruct new mRNA transcripts from short sequencing reads with reference information of known transcripts in existing databases. The prior knowledge helped to define exon boundaries and fill in the transcript regions not covered by sequencing data. This approach was demonstrated using a deep sequencing data set of human muscle tissue with transcript annotations in RefSeq as prior knowledge. We identified 2,973 junctions, 7,471 exons, and 7,571 transcripts not previously annotated in RefSeq. 73% of these new transcripts found supports from UCSC Known Genes, Ensembl or EST transcript annotations. In addition, the reconstructed transcripts were much longer than those from de novo approaches that assume no prior knowledge. These previously un-annotated transcripts can be integrated with known transcript annotations to improve both the design of microarrays and the follow-up analyses of isoform expression. The overall results demonstrated that incorporating transcript annotations from genomic databases significantly helps the reconstruction of novel transcripts from short sequencing reads for transcriptome research

    A dynamic network of transcription in LPS-treated human subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding the transcriptional regulatory networks that map out the coordinated dynamic responses of signaling proteins, transcription factors and target genes over time would represent a significant advance in the application of genome wide expression analysis. The primary challenge is monitoring transcription factor activities over time, which is not yet available at the large scale. Instead, there have been several developments to estimate activities computationally. For example, Network Component Analysis (NCA) is an approach that can predict transcription factor activities over time as well as the relative regulatory influence of factors on each target gene.</p> <p>Results</p> <p>In this study, we analyzed a gene expression data set in blood leukocytes from human subjects administered with lipopolysaccharide (LPS), a prototypical inflammatory challenge, in the context of a reconstructed regulatory network including 10 transcription factors, 99 target genes and 149 regulatory interactions. We found that the computationally estimated activities were well correlated to their coordinated action. Furthermore, we found that clustering the genes in the context of regulatory influences greatly facilitated interpretation of the expression data, as clusters of gene expression corresponded to the activity of specific factors or more interestingly, factor combinations which suggest coordinated regulation of gene expression. The resulting clusters were therefore more biologically meaningful, and also led to identification of additional genes under the same regulation.</p> <p>Conclusion</p> <p>Using NCA, we were able to build a network that accounted for between 8–11% genes in the known transcriptional response to LPS in humans. The dynamic network illustrated changes of transcription factor activities and gene expressions as well as interactions of signaling proteins, transcription factors and target genes.</p

    A Standalone Vision Sensing System for Pseudodynamic Testing of Tuned Liquid Column Dampers

    Get PDF
    Experimental investigation of the tuned liquid column damper (TLCD) is a primal factory task prior to its installation at a site and is mainly undertaken by a pseudodynamic test. In this study, a noncontact standalone vision sensing system is developed to replace a series of the conventional sensors installed at the TLCD tested. The fast vision sensing system is based on binary pixel counting of the portion of images steamed in a pseudodynamic test and achieves near real-time measurements of wave height, lateral motion, and control force of the TLCD. The versatile measurements of the system are theoretically and experimentally evaluated through a wide range of lab scale dynamic tests

    An Electrical Wave Height Measurement at Spatial Multipoint Locations in Liquid Dampers for Structural Vibration Mitigation

    Get PDF
    Liquid dampers such as tuned liquid column dampers and tuned liquid dampers have been adopted to ensure serviceability of a vibratory building subjected to wind. In order to maximize efficiency of the vibration suppression, tuning frequency of the liquid dampers is supposed to be set to the first natural frequency of the building. Therefore, experimental evaluation of the natural frequency of liquid dampers is a primal factory task prior to their installation at the building. In this study, a novel liquid height measurement system based on variable resistance in an electric field is developed for observation of vertical motion of the liquid dampers. The proposed system can simultaneously measure the liquid height of multipoint locations in the electric field. In the experimental phase, natural frequency of the liquid dampers is experimentally evaluated utilizing the developed system. The performance of the proposed system is verified by comparison with the capacitive type wavemeter

    Using high-density exon arrays to profile gene expression in closely related species

    Get PDF
    Global comparisons of gene expression profiles between species provide significant insight into gene regulation, evolutionary processes and disease mechanisms. In this work, we describe a flexible and intuitive approach for global expression profiling of closely related species, using high-density exon arrays designed for a single reference genome. The high-density probe coverage of exon arrays allows us to select identical sets of perfect-match probes to measure expression levels of orthologous genes. This eliminates a serious confounding factor in probe affinity effects of species-specific microarray probes, and enables direct comparisons of estimated expression indexes across species. Using a newly designed Affymetrix exon array, with eight probes per exon for approximately 315 000 exons in the human genome, we conducted expression profiling in corresponding tissues from humans, chimpanzees and rhesus macaques. Quantitative real-time PCR analysis of differentially expressed candidate genes is highly concordant with microarray data, yielding a validation rate of 21/22 for human versus chimpanzee differences, and 11/11 for human versus rhesus differences. This method has the potential to greatly facilitate biomedical and evolutionary studies of gene expression in nonhuman primates and can be easily extended to expression array design and comparative analysis of other animals and plants

    Distinctive Responsiveness to Stromal Signaling Accompanies Histologic Grade Programming of Cancer Cells

    Get PDF
    Whether stromal components facilitate growth, invasion, and dissemination of cancer cells or suppress neoplastic lesions from further malignant progression is a continuing conundrum in tumor biology. Conceptualizing a dynamic picture of tumorigenesis is complicated by inter-individual heterogeneity. In the post genomic era, unraveling such complexity remains a challenge for the cancer biologist. Towards establishing a functional association between cellular crosstalk and differential cancer aggressiveness, we identified a signature of malignant breast epithelial response to stromal signaling. Proximity to fibroblasts resulted in gene transcript alterations of >2-fold for 107 probes, collectively designated as Fibroblast Triggered Gene Expression in Tumor (FTExT). The hazard ratio predicted by the FTExT classifier for distant relapse in patients with intermediate and high grade breast tumors was significant compared to routine clinical variables (dataset 1, n = 258, HR – 2.11, 95% CI 1.17–3.80, p-value 0.01; dataset 2, n = 171, HR - 3.07, 95% CI 1.21–7.83, p-value 0.01). Biofunctions represented by FTExT included inflammatory signaling, free radical scavenging, cell death, and cell proliferation. Unlike genes of the ‘proliferation cluster’, which are overexpressed in aggressive primary tumors, FTExT genes were uniquely repressed in such cases. As proof of concept for our correlative findings, which link stromal-epithelial crosstalk and tumor behavior, we show a distinctive differential in stromal impact on prognosis-defining functional endpoints of cell cycle progression, and resistance to therapy-induced growth arrest and apoptosis in low vs. high grade cancer cells. Our experimental data thus reveal aspects of ‘paracrine cooperativity’ that are exclusively contingent upon the histopathologically defined grade of interacting tumor epithelium, and demonstrate that epithelial responsiveness to the tumor microenvironment is a deterministic factor underlying clinical outcome. In this light, early attenuation of epithelial-stromal crosstalk could improve the management of cases prone to be clinically challenging
    corecore