25 research outputs found
Oct-4 controls cell-cycle progression of embryonic stem cells
Mouse and human ES (embryonic stem) cells display unusual proliferative properties and can produce pluripotent stem cells indefinitely. Both processes might be important for maintaining the āstemnessā of ES cells; however, little is known about how the cell-cycle fate is regulated in ES cells. Oct-4, a master switch of pluripotency, plays an important role in maintaining the pluripotent state of ES cells and may prevent the expression of genes activated during differentiation. Using ZHBTc4 ES cells, we have investigated the effect of Oct-4 on ES cell-cycle control, and we found that Oct-4 down-regulation in ES cells inhibits proliferation by blocking cell-cycle progression in G0/G1. Deletion analysis of the functional domains of Oct-4 indicates that the overall integrity of the Oct-4 functional domains is important for the stimulation of S-phase entry. We also show in the present study that the p21 gene is a target for Oct-4 repression. Furthermore, p21 protein levels were repressed by Oct-4 and were induced by the down-regulation of Oct-4 in ZHBTc4 ES cells. Therefore the down-regulation of p21 by Oct-4 may contribute to the maintenance of ES cell proliferation
Peroxisome Proliferator-Activated Receptor Ī± Agonist and Its Target Nanog Cooperate to Induce Pluripotency
The pharmaceutical compounds that modulate pluripotent stem cell (PSC) identity and function are increasingly adopted to generate qualified PSCs and their derivatives, which have promising potential in regenerative medicine, in pursuit of more accuracy and safety and less cost. Here, we demonstrate the peroxisome proliferator-activated receptor α (PPARα) agonist as a novel enhancer of pluripotency acquisition and induced pluripotent stem cell (iPSC) generation. We found that PPARα agonist, examined and selected Food and Drug Administration (FDA) -approved compound libraries, increase the expression of pluripotency-associated genes, such as Nanog, Nr5A2, Oct4, and Rex1, during the reprogramming process and facilitate iPSC generation by enhancing their reprogramming efficiency. A reprogramming-promoting effect of PPARα occurred via the upregulation of Nanog, which is essential for the induction and maintenance of pluripotency. Through bioinformatic analysis, we identified putative peroxisome proliferator responsive elements (PPREs) located within the promoter region of the Nanog gene. We also determined that PPARα can activate Nanog transcription by specific binding to putative PPREs. Taken together, our findings suggest that PPARα is an important regulator of PSC pluripotency and reprogramming, and PPARα agonists can be used to improve PSC technology and regenerative medicine
Protein Kinases and Their Inhibitors in Pluripotent Stem Cell Fate Regulation
Protein kinases modulate the reversible postmodifications of substrate proteins to their phosphorylated forms as an essential process in regulating intracellular signaling transduction cascades. Moreover, phosphorylation has recently been shown to tightly control the regulatory network of kinases responsible for the induction and maintenance of pluripotency, defined as the particular ability to differentiate pluripotent stem cells (PSCs) into every cell type in the adult body. In particular, emerging evidence indicates that the balance between the self-renewal and differentiation of PSCs is regulated by the small molecules that modulate kinase signaling pathways. Furthermore, new reprogramming technologies have been developed using kinase modulators, which have provided novel insight of the mechanisms underlying the kinase regulatory networks involved in the generation of induced pluripotent stem cells (iPSCs). In this review, we highlight the recent progress made in defining the roles of protein kinase signaling pathways and their small molecule modulators in regulating the pluripotent states, self-renewal, reprogramming process, and lineage differentiation of PSCs
Causes and Mechanisms of Hematopoietic Stem Cell Aging
Many elderly people suffer from hematological diseases known to be highly age-dependent. Hematopoietic stem cells (HSCs) maintain the immune system by producing all blood cells throughout the lifetime of an organism. Recent reports have suggested that HSCs are susceptible to age-related stress and gradually lose their self-renewal and regeneration capacity with aging. HSC aging is driven by cell-intrinsic and -extrinsic factors that result in the disruption of the immune system. Thus, the study of HSC aging is important to our understanding of age-related immune diseases and can also provide potential strategies to improve quality of life in the elderly. In this review, we delineate our understanding of the phenotypes, causes, and molecular mechanisms involved in HSC aging
Pharmacological Regulation of Oxidative Stress in Stem Cells
Oxidative stress results from an imbalance between reactive oxygen species (ROS) production and antioxidant defense mechanisms. The regulation of stem cell self-renewal and differentiation is crucial for early development and tissue homeostasis. Recent reports have suggested that the balance between self-renewal and differentiation is regulated by the cellular oxidation-reduction (redox) state; therefore, the study of ROS regulation in regenerative medicine has emerged to develop protocols for regulating appropriate stem cell differentiation and maintenance for clinical applications. In this review, we introduce the defined roles of oxidative stress in pluripotent stem cells (PSCs) and hematopoietic stem cells (HSCs) and discuss the potential applications of pharmacological approaches for regulating oxidative stress in regenerative medicine
3,3ā²-Bicarbazole-Based Host Molecules for Solution-Processed Phosphorescent OLEDs
Solution-processed organic light-emitting diodes (OLEDs) are attractive due to their low-cost, large area displays, and lighting features. Small molecules as well as polymers can be used as host materials within the solution-processed emitting layer. Herein, we report two 3,3ā²-bicarbazole-based host small molecules, which possess a structural isomer relationship. 9,9ā²-Di-4-n-butylphenyl-9H,9ā²H-3,3ā²-bicarbazole (BCz-nBuPh) and 9,9ā²-di-4-t-butylphenyl-9H,9ā²H-3,3ā²-bicarbazole (BCz-tBuPh) exhibited similar optical properties within solutions but different photoluminescence within films. A solution-processed green phosphorescent OLED with the BCz-tBuPh host exhibited a high maximum current efficiency and power efficiency of 43.1 cd/A and 40.0 lm/W, respectively, compared to the device with the BCz-nBuPh host
Effects of the Extracts from Fruit and Stem of <i>Camellia japonica</i> on Induced Pluripotency and Wound Healing
Small molecules that improve reprogramming, stem cell properties, and regeneration can be widely applied in regenerative medicine. Natural plant extracts represent an abundant and valuable source of bioactive small molecules for drug discovery. Natural products themselves or direct derivatives of them have continued to provide small molecules that have entered clinical trials, such as anticancer and antimicrobial drugs. Here, we tested 3695 extracts from native plants to examine whether they can improve induced pluripotent stem cell (iPSC) generation using genetically homogeneous secondary mouse embryonic fibroblasts (MEFs) harboring doxycycline (dox)-inducible reprograming transgenes. Among the tested extracts, extracts from the fruit and stem of Camellia japonica (CJ) enhanced mouse and human iPSC generation and promoted efficient wound healing in an in vivo mouse wound model. CJ is one of the best-known species of the genus Camellia that belongs to the Theaceae family. Our findings identified the natural plant extracts from the fruit and stem of CJ as novel regulators capable of enhancing cellular reprogramming and wound healing, providing a useful supplement in the development of a more efficient and safer method to produce clinical-grade iPSCs and therapeutics
Schwann Cell Precursors from Human Pluripotent Stem Cells as a Potential Therapeutic Target for Myelin Repair
Schwann cells play a crucial role in successful nerve repair and regeneration by supporting both axonal growth and myelination. However, the sources of human Schwann cells are limited both for studies of Schwann cell development and biology and for the development of treatments for Schwann cell-associated diseases. Here, we provide a rapid and scalable method to produce self-renewing Schwann cell precursors (SCPs) from human pluripotent stem cells (hPSCs), using combined sequential treatment with inhibitors of the TGF-Ī² and GSK-3 signaling pathways, and with neuregulin-1 for 18Ā days under chemically defined conditions. Within 1Ā week, hPSC-derived SCPs could be differentiated into immature Schwann cells that were functionally confirmed by their secretion of neurotrophic factors and their myelination capacity inĀ vitro and inĀ vivo. We propose that hPSC-derived SCPs are a promising, unlimited source of functional Schwann cells for treating demyelination disorders and injuries to the peripheral nervous system