22 research outputs found
Physiological and cell ultrastructure disturbances in wheat seedlings generated by Chenopodium murale hairy root exudate.
Chenopodium murale L. is an invasive weed species significantly interfering with wheat crop. However, the complete nature of its allelopathic influence on crops is not yet fully understood. In the present study, the focus is made on establishing the relation between plant morphophysiological changes and oxidative stress, induced by allelopathic extract. Phytotoxic medium of C. murale hairy root clone R5 reduced the germination rate (24% less than control value) of wheat cv. Nataša seeds, as well as seedling growth, diminishing shoot and root length significantly, decreased total chlorophyll content, and induced abnormal root gravitropism. The R5 treatment caused cellular structural abnormalities, reflecting on the root and leaf cell shape and organization. These abnormalities mostly included the increased number of mitochondria and reorganization of the vacuolar compartment, changes in nucleus shape, and chloroplast organization and distribution. The most significant structural changes were observed in cell wall in the form of amoeboid protrusions and folds leading to its irregular shape. These structural alterations were accompanied by an oxidative stress in tissues of treated wheat seedlings, reflected as increased level of H2O2 and other ROS molecules, an increase of radical scavenging capacity and total phenolic content. Accordingly, the retardation of wheat seedling growth by C. murale allelochemicals may represent a consequence of complex activity involving both cell structure alteration and physiological processes.This is a post-peer-review, pre-copyedit version of an article published in Protoplasma. The final authenticated version is available online at: [http://dx.doi.org/10.1007/s00709-018-1250-0
A Case of the Serotonin Syndrome Secondary to Phenelzine Monotherapy at Therapeutic Dosing
A 27-year-old Caucasian female with a history of depression was admitted to our local hospital with vague events that occurred a day before. This included an episode of dysarthria, and unsteadiness, followed by feeling generally unwell. Two weeks prior to presentation she was commenced on phenelzine. During clinical assessment she suddenly deteriorated with a dramatic fall in her conscious level. Moreover, she became hyperthermic, tachycardic, and diaphoretic, and developed increased tone in all muscles and ocular clonus. Rectal diazepam was administered but failed to control the symptoms. Consequently, she was transferred to the intensive care unit for intubation and muscle relaxants were commenced. She responded well and recovered next day without complications. Her symptoms and signs were consistent with the serotonin syndrome with phenelzine being the likely cause. To the best of our knowledge, this is the first reported case to associate the condition with phenelzine alone at therapeutic dose
Effects of Exercise on the Urinary Proteome
Exercise-induced proteinuria has been observed and studied for more than a century. It was found that different sport disciplines alter the urinary proteome in different ways. Moderate-intensity exercise results in increased glomerular filtration, meaning that medium-sized proteins are excreted in higher amounts, while high-intensity exercise of short duration also increases the excretion of low molecular weight proteins as a result of tubular dysfunction. Exhaustive exercise may lead to the excretion of hemoglobin or myoglobin, which changes the urinary proteome considerably. Studies comparing protein maps of different sport types compared to a control group showed that quality and quantity of urinary proteins are interindividually different. In addition, urine samples collected before and after exercise exhibit substantially different protein patterns even from the same person. Therefore, further studies investigating the urinary proteome are desirable. As the variation of protein content and composition in urine are generally much higher than in other matrices, respective studies need to be well controlled and homogenous groups of volunteers should be chosen. In addition to the sport-related physiological and biochemical interest, exercise-induced protein changes also need to be considered for biomarker measurements from urine samples for kidney or other diseases