2 research outputs found

    Evolving Particles in the 2022 Hunga Tonga—Hunga Ha'apai Volcano Eruption Plume

    No full text
    The Multi-angle Imaging SpectroRadiometer (MISR) aboard NASA’s Terra satellite observed the Hunga Tonga—Hunga Ha’apai (HTHH) 15 January eruption plume on seven occasions between 15 and 23 January 2022. From the MISR multi-angle, multi-spectral imagery we retrieve aerosol plume height geometrically, along with plume-level motion vectors, and derive radiometrically constraints on particle effective size, shape, and light-absorption properties. Parts of two downwind aerosol layers were observed in different places and times, one concentrated in the upper troposphere (11-18 km ASL), and a mid-stratosphere layer ~23 – 30+ km ASL. After the initial day (1/15), the retrievals identified only spherical, non-light-absorbing particles, typical of volcanic sulfate/water particles. The near-tropopause plume particles show constant, medium-small (several tenths of a micron) effective size over four days. The mid-stratosphere particles were consistently smaller, but retrieved effective particle size increased between 1/17 and 1/23, though they might have decreased slightly on 1/22. As a vast amount of water was also injected into the stratosphere by this eruption, models predicted relatively rapid growth of sulfate particles from the modest amounts of SO2 gas injected by the eruption to high altitudes along with the water (Zhu et al, 2022). MISR observations up to ten days after the eruption are consistent with these model predictions. The possible decrease in stratospheric particle size after initial growth was likely caused by evaporation, as the plume mixed with drier, ambient air. Particles in the lower-elevation plume observed on 1/15 were larger than all the downwind aerosols and contained significant non-spherical (likely ash) particles

    Wildfire Smoke Particle Properties and Evolution, From Space-Based Multi-Angle Imaging II: The Williams Flats Fire during the FIREX-AQ Campaign

    No full text
    Although the characteristics of biomass burning events and the ambient ecosystem determine emitted smoke composition, the conditions that modulate the partitioning of black carbon (BC) and brown carbon (BrC) formation are not well understood, nor are the spatial or temporal frequency of factors driving smoke particle evolution, such as hydration, coagulation, and oxidation, all of which impact smoke radiative forcing. In situ data from surface observation sites and aircraft field campaigns offer deep insight into the optical, chemical, and microphysical traits of biomass burning (BB) smoke aerosols, such as single scattering albedo (SSA) and size distribution, but cannot by themselves provide robust statistical characterization of both emitted and evolved particles. Data from the NASA Earth Observing System’s Multi-Angle Imaging SpectroRadiometer (MISR) instrument can provide at least a partial picture of BB particle properties and their evolution downwind, once properly validated. Here we use in situ data from the joint NOAA/NASA 2019 Fire Influence on Regional to Global Environments Experiment-Air Quality (FIREX-AQ) field campaign to assess the strengths and limitations of MISR-derived constraints on particle size, shape, light-absorption, and its spectral slope, as well as plume height and associated wind vectors. Based on the satellite observations, we also offer inferences about aging mechanisms effecting downwind particle evolution, such as gravitational settling, oxidation, secondary particle formation, and the combination of particle aggregation and condensational growth. This work builds upon our previous study, adding confidence to our interpretation of the remote-sensing data based on an expanded suite of in situ measurements for validation. The satellite and in situ measurements offer similar characterizations of particle property evolution as a function of smoke age for the 06 August Williams Flats Fire, and most of the key differences in particle size and absorption can be attributed to differences in sampling and changes in the plume geometry between sampling times. Whereas the aircraft data provide validation for the MISR retrievals, the satellite data offer a spatially continuous mapping of particle properties over the plume, which helps identify trends in particle property downwind evolution that are ambiguous in the sparsely sampled aircraft transects. The MISR data record is more than two decades long, offering future opportunities to study regional wildfire plume behavior statistically, where aircraft data are limited or entirely lacking.https://doi.org/10.3390/rs1222382
    corecore