16 research outputs found

    Mobile N\'eel skyrmions at room temperature: status and future

    Full text link
    Magnetic skyrmions are topologically protected spin textures that exhibit many fascinating features. As compared to the well-studied cryogenic Bloch skyrmions in bulk materials, we focus on the room-temperature N\'eel skyrmions in thin-film systems with an interfacial broken inversion symmetry in this article. Specifically, we show the stabilization, the creation, and the implementation of N\'eel skyrmions that are enabled by the electrical current-induced spin-orbit torques. Towards the nanoscale N\'eel skyrmions, we further discuss the challenges from both material optimization and imaging characterization perspectives.Comment: This is an invited paper to be published in the AIP Advance

    Ultrastrong Magnon-Magnon Coupling and Chiral Symmetry Breaking in a 3D Magnonic Metamaterial

    Full text link
    Strongly-interacting nanomagnetic arrays are ideal systems for exploring the frontiers of magnonic control. They provide functional reconfigurable platforms and attractive technological solutions across storage, GHz communications and neuromorphic computing. Typically, these systems are primarily constrained by their range of accessible states and the strength of magnon coupling phenomena. Increasingly, magnetic nanostructures have explored the benefits of expanding into three dimensions. This has broadened the horizons of magnetic microstate spaces and functional behaviours, but precise control of 3D states and dynamics remains challenging. Here, we introduce a 3D magnonic metamaterial, compatible with widely-available fabrication and characterisation techniques. By combining independently-programmable artificial spin-systems strongly coupled in the z-plane, we construct a reconfigurable 3D metamaterial with an exceptionally high 16N microstate space and intense static and dynamic magnetic coupling. The system exhibits a broad range of emergent phenomena including ultrastrong magnon-magnon coupling with normalised coupling rates of Δωγ=0.57\frac{\Delta \omega}{\gamma} = 0.57 and magnon-magnon cooperativity up to C = 126.4, GHz mode shifts in zero applied field and chirality-selective magneto-toroidal microstate programming and corresponding magnonic spectral control

    Controlling magnon-photon coupling in a planar geometry

    No full text
    The tunability of magnons enables their interaction with various other quantum excitations, including photons, paving the route for novel hybrid quantum systems. Here, we study magnon-photon coupling using a high-quality factor split-ring resonator and single-crystal yttrium iron garnet (YIG) sphere at room temperature. We investigate the dependence of the coupling strength on the size of the sphere and find that the coupling is stronger for spheres with a larger diameter as predicted by theory. Furthermore, we demonstrate strong magnon-photon coupling by varying the position of the YIG sphere within the resonator. Our experimental results reveal the expected correlation between the coupling strength and the rf magnetic field. These findings demonstrate the control of coherent magnon-photon coupling through the theoretically predicted square-root dependence on the spin density in the ferromagnetic medium and the magnetic dipolar interaction in a planar resonator
    corecore