1,731 research outputs found

    A variational approach to computing invariant sets in dynamical systems

    Get PDF
    We propose to compute approximations to invariant sets in dynamical systems by minimizing an appropriate distance between a suitably selected finite set of points and its image under the dynamics. We demonstrate, through computational experiments, that this approach can successfully converge to approximations of (maximal) invariant sets of arbitrary topology, dimension, and stability, such as, e.g., saddle type invariant sets with complicated dynamics. We further propose to extend this approach by adding a Lennard-Jones type potential term to the objective function, which yields more evenly distributed approximating finite point sets, and illustrate the procedure through corresponding numerical experiments. In the phase space of any nonlinear dynamical system, the “skeleton” of the global dynamical behavior consists of the invariant sets of the system, e.g., fixed points, periodic orbits, general recurrent sets, and the connecting orbits/invariant manifolds between them. Computational methods for approximating invariant sets have been, and will continue to be, a major part of the “toolkit” of every dynamical systems researcher, whether on the mathematical or on the modeling side. In this contribution we devise and implement a new variational approach for this task, which is able to compute invariant sets of arbitrary dimension, topology, and stability type. In addition—and in contrast to classical techniques—our method provides an approximate parametrization of the invariant set, which can be (smoothly) followed in parameter space. I. INTRODUCTIO

    Estimating long term behavior of flows without trajectory integration: the infinitesimal generator approach

    Full text link
    The long-term distributions of trajectories of a flow are described by invariant densities, i.e. fixed points of an associated transfer operator. In addition, global slowly mixing structures, such as almost-invariant sets, which partition phase space into regions that are almost dynamically disconnected, can also be identified by certain eigenfunctions of this operator. Indeed, these structures are often hard to obtain by brute-force trajectory-based analyses. In a wide variety of applications, transfer operators have proven to be very efficient tools for an analysis of the global behavior of a dynamical system. The computationally most expensive step in the construction of an approximate transfer operator is the numerical integration of many short term trajectories. In this paper, we propose to directly work with the infinitesimal generator instead of the operator, completely avoiding trajectory integration. We propose two different discretization schemes; a cell based discretization and a spectral collocation approach. Convergence can be shown in certain circumstances. We demonstrate numerically that our approach is much more efficient than the operator approach, sometimes by several orders of magnitude

    Large violation of Bell inequalities with low entanglement

    Get PDF
    In this paper we obtain violations of general bipartite Bell inequalities of order nlogn\frac{\sqrt{n}}{\log n} with nn inputs, nn outputs and nn-dimensional Hilbert spaces. Moreover, we construct explicitly, up to a random choice of signs, all the elements involved in such violations: the coefficients of the Bell inequalities, POVMs measurements and quantum states. Analyzing this construction we find that, even though entanglement is necessary to obtain violation of Bell inequalities, the Entropy of entanglement of the underlying state is essentially irrelevant in obtaining large violation. We also indicate why the maximally entangled state is a rather poor candidate in producing large violations with arbitrary coefficients. However, we also show that for Bell inequalities with positive coefficients (in particular, games) the maximally entangled state achieves the largest violation up to a logarithmic factor.Comment: Reference [16] added. Some typos correcte

    Optimally coherent sets in geophysical flows: A new approach to delimiting the stratospheric polar vortex

    Full text link
    The "edge" of the Antarctic polar vortex is known to behave as a barrier to the meridional (poleward) transport of ozone during the austral winter. This chemical isolation of the polar vortex from the middle and low latitudes produces an ozone minimum in the vortex region, intensifying the ozone hole relative to that which would be produced by photochemical processes alone. Observational determination of the vortex edge remains an active field of research. In this letter, we obtain objective estimates of the structure of the polar vortex by introducing a new technique based on transfer operators that aims to find regions with minimal external transport. Applying this new technique to European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-40 three-dimensional velocity data we produce an improved three-dimensional estimate of the vortex location in the upper stratosphere where the vortex is most pronounced. This novel computational approach has wide potential application in detecting and analysing mixing structures in a variety of atmospheric, oceanographic, and general fluid dynamical settings

    BMO spaces associated with semigroups of operators

    Full text link
    We study BMO spaces associated with semigroup of operators and apply the results to boundedness of Fourier multipliers. We prove a universal interpolation theorem for BMO spaces and prove the boundedness of a class of Fourier multipliers on noncommutative Lp spaces for all 1 < p < \infty, with optimal constants in p.Comment: Math An

    Connes' embedding problem and Tsirelson's problem

    Get PDF
    We show that Tsirelson's problem concerning the set of quantum correlations and Connes' embedding problem on finite approximations in von Neumann algebras (known to be equivalent to Kirchberg's QWEP conjecture) are essentially equivalent. Specifically, Tsirelson's problem asks whether the set of bipartite quantum correlations generated between tensor product separated systems is the same as the set of correlations between commuting C*-algebras. Connes' embedding problem asks whether any separable II1_1 factor is a subfactor of the ultrapower of the hyperfinite II1_1 factor. We show that an affirmative answer to Connes' question implies a positive answer to Tsirelson's. Conversely, a positve answer to a matrix valued version of Tsirelson's problem implies a positive one to Connes' problem

    Long time, large scale limit of the Wigner transform for a system of linear oscillators in one dimension

    Get PDF
    We consider the long time, large scale behavior of the Wigner transform W_\eps(t,x,k) of the wave function corresponding to a discrete wave equation on a 1-d integer lattice, with a weak multiplicative noise. This model has been introduced in Basile, Bernardin, and Olla to describe a system of interacting linear oscillators with a weak noise that conserves locally the kinetic energy and the momentum. The kinetic limit for the Wigner transform has been shown in Basile, Olla, and Spohn. In the present paper we prove that in the unpinned case there exists γ0>0\gamma_0>0 such that for any γ(0,γ0]\gamma\in(0,\gamma_0] the weak limit of W_\eps(t/\eps^{3/2\gamma},x/\eps^{\gamma},k), as \eps\ll1, satisfies a one dimensional fractional heat equation tW(t,x)=c^(x2)3/4W(t,x)\partial_t W(t,x)=-\hat c(-\partial_x^2)^{3/4}W(t,x) with c^>0\hat c>0. In the pinned case an analogous result can be claimed for W_\eps(t/\eps^{2\gamma},x/\eps^{\gamma},k) but the limit satisfies then the usual heat equation
    corecore