246 research outputs found

    The competition number of a graph and the dimension of its hole space

    Full text link
    The competition graph of a digraph D is a (simple undirected) graph which has the same vertex set as D and has an edge between x and y if and only if there exists a vertex v in D such that (x,v) and (y,v) are arcs of D. For any graph G, G together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. The competition number k(G) of G is the smallest number of such isolated vertices. In general, it is hard to compute the competition number k(G) for a graph G and it has been one of important research problems in the study of competition graphs to characterize a graph by its competition number. Recently, the relationship between the competition number and the number of holes of a graph is being studied. A hole of a graph is a cycle of length at least 4 as an induced subgraph. In this paper, we conjecture that the dimension of the hole space of a graph is no smaller than the competition number of the graph. We verify this conjecture for various kinds of graphs and show that our conjectured inequality is indeed an equality for connected triangle-free graphs.Comment: 6 pages, 3 figure

    Isolated Double-Chambered Right Ventricle in a Young Adult

    Get PDF
    Double-chambered right ventricle (DCRV) is a rare congenital heart disorder in which the right ventricle is divided by an anomalous muscle bundle into a high pressure inlet portion and a low pressure outlet portion. We report a case of isolated DCRV without symptoms in adulthood, diagnosed through echocardiography, cardiac catheterization and cardiac magnetic resonance imaging

    Competitively tight graphs

    Full text link
    The competition graph of a digraph DD is a (simple undirected) graph which has the same vertex set as DD and has an edge between two distinct vertices xx and yy if and only if there exists a vertex vv in DD such that (x,v)(x,v) and (y,v)(y,v) are arcs of DD. For any graph GG, GG together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. The competition number k(G)k(G) of a graph GG is the smallest number of such isolated vertices. Computing the competition number of a graph is an NP-hard problem in general and has been one of the important research problems in the study of competition graphs. Opsut [1982] showed that the competition number of a graph GG is related to the edge clique cover number θE(G)\theta_E(G) of the graph GG via θE(G)−∣V(G)∣+2≤k(G)≤θE(G)\theta_E(G)-|V(G)|+2 \leq k(G) \leq \theta_E(G). We first show that for any positive integer mm satisfying 2≤m≤∣V(G)∣2 \leq m \leq |V(G)|, there exists a graph GG with k(G)=θE(G)−∣V(G)∣+mk(G)=\theta_E(G)-|V(G)|+m and characterize a graph GG satisfying k(G)=θE(G)k(G)=\theta_E(G). We then focus on what we call \emph{competitively tight graphs} GG which satisfy the lower bound, i.e., k(G)=θE(G)−∣V(G)∣+2k(G)=\theta_E(G)-|V(G)|+2. We completely characterize the competitively tight graphs having at most two triangles. In addition, we provide a new upper bound for the competition number of a graph from which we derive a sufficient condition and a necessary condition for a graph to be competitively tight.Comment: 10 pages, 2 figure
    • …
    corecore