31,742 research outputs found

    The phenomenology of electric dipole moments in models of scalar leptoquarks

    Full text link
    We study the phenomenology of electric dipole moments (EDMs) induced in various scalar leptoquark models. We consider generic leptoquark couplings to quarks and leptons and match to Standard Model effective field theory. After evolving the resulting operators to low energies, we connect to EDM experiments by using up-to-date hadronic, nuclear, and atomic matrix elements. We show that current experimental limits set strong constraints on the possible CP-violating phases in leptoquark models. Depending on the quarks and leptons involved in the interaction, the existing searches for EDMs of leptons, nucleons, atoms, and molecules all play a role in constraining the CP-violating couplings. We discuss the impact of hadronic and nuclear uncertainties as well as the sensitivities that can be achieved with future EDM experiments. Finally, we study the impact of EDM constraints on a specific leptoquark model that can explain the recent BB-physics anomalies.Comment: Published versio

    Structural and Correlation Effects in the Itinerant Insulating Antiferromagnetic Perovskite NaOsO3

    Full text link
    The orthorhombic perovskite NaOsO3 undergoes a continuous metal-insulator transition (MIT), accompanied by antiferromagnetic (AFM) order at T_N=410 K, suggested to be an example of the rare Slater (itinerant) MIT. We study this system using ab initio and related methods, focusing on the origin and nature of magnetic ordering and the MIT. The rotation and tilting of OsO6 octahedra in the GdFeO3 structure result in moderate narrowing the band width of the t_{2g} manifold, but sufficient to induce flattening of bands and AFM order within the local spin density approximation (LSDA), where it remains metallic but with a deep pseudogap. Including on-site Coulomb repulsion U, at U_c ~2 eV a MIT occurs only in the AFM state. Effects of spin-orbit coupling (SOC) on the band structure seem minor as expected for a half-filled t2g3t_{2g}^{3} shell, but SOC doubles the critical value U_c necessary to open a gap and also leads to large magnetocrystalline energy differences in spite of normal orbital moments no greater than 0.1μB\mu_B. Our results are consistent with a Slater MIT driven by magnetic order, induced by a combination of structurally-induced band narrowing and moderate Coulomb repulsion, with SOC necessary for a full picture. Strong p-d hybridization reduces the moment, and when bootstrapped by the reduced Hund's rule coupling (proportional to the moment) gives a calculated moment of ~1 μB\mu_B, consistent with the observed moment and only a third of the formal d3d^3 value. We raise and discuss one important question: since this AFM ordering is at q=0 (in the 20 atom cell) where nesting is a moot issue, what is the microscopic driving force for ordering and the accompanying MIT?Comment: 9 page

    The intrinsic strangeness and charm of the nucleon using improved staggered fermions

    Full text link
    We calculate the intrinsic strangeness of the nucleon, - , using the MILC library of improved staggered gauge configurations using the Asqtad and HISQ actions. Additionally, we present a preliminary calculation of the intrinsic charm of the nucleon using the HISQ action with dynamical charm. The calculation is done with a method which incorporates features of both commonly-used methods, the direct evaluation of the three-point function and the application of the Feynman- Hellman theorem. We present an improvement on this method that further reduces the statistical error, and check the result from this hybrid method against the other two methods and find that they are consistent. The values for and found here, together with perturbative results for heavy quarks, show that dark matter scattering through Higgs-like exchange receives roughly equal contributions from all heavy quark flavors.Comment: 17 pages, 14 figure

    Development of a usability evaluation method using natural product-use motion

    Get PDF
    The present study developed and tested a new usability evaluation method which considers natural product-use motions. The proposed method measures both natural product-use motions (NMs) and actual product-use motions (AMs) for a product using an optical motion capture system and examines the usability of the product based on motion similarity (MS; %) between NMs and AMs. The proposed method was applied to a usability test of four vacuum cleaners (A, B, C, and D) with 15 participants and their MSs were compared with EMG measurements and subjective discomfort ratings. Cleaners A (44.6%) and C (44.2%) showed higher MSs than cleaners B (42.9%) and D (41.7%); the MSs mostly corresponded to the EMG measurements, which could indicate that AMs deviated from NMs may increase muscular efforts. However, the MSs were slightly different from the corresponding discomfort ratings. The proposed method demonstrated its usefulness in usability testing, but further research is needed with various products to generalize its effectiveness. ? 2016 Elsevier Ltd113Nsciessciscopu
    corecore