1,059 research outputs found

    pH-responsive aqueous/LC interfaces using SGLCP-b-polyacrylic acid block copolymers

    Get PDF
    Block copolymers that combine a side-group liquid crystalline polymer (SGLCP) block and a pH-responsivehydrophilic block, poly(acrylic acid) (PAA), are shown to confer pH-dependent anchoring of the director orientation at the aqueous/LC interface. The SGLCP block, poly(4-cyanobiphenyl-4-oxyundecylacrylate), was chosen based on its ability to influence the director field of the 5CB (4-cyano-4'-pentylbiphenyl). At low pH the PAA block collapses and the inherent, planar alignment tendency of 5CB at a water interface prevails. As pH increases, the polyelectrolyte block becomes increasingly charged and expands, producing a change to homeotropic anchoring. The change in anchoring occurs as quickly as the buffer can be changed (within ~2 s) and is reversible, with a response that is repeatable over as many cycles as were tested (approximately 20 cycles). The polymer-mediated anchoring persists for 6 days, indicating that the SGLCP block secures the self-assembled layer on the 5CB, even under conditions that cause repulsive interactions among the PAA blocks. Thus, SGLCP blocks can translate conformational changes of a responsive hydrophilic block into rapid, reversible changes in the director fiel

    Alcohol induces cell proliferation via hypermethylation of ADHFE1 in colorectal cancer cells

    Get PDF
    BACKGROUND: The hypermethylation of Alcohol dehydrogenase iron containing 1 (ADHFE1) was recently reported to be associated with colorectal cancer (CRC) differentiation. However, the effect of alcohol on ADHFE1 hypermethylation in CRC is still unclear. METHODS: The methylation status and expression levels of ADHFE1 were investigated in primary tumor tissues and adjacent normal tissues of 73 patients with CRC, one normal colon cell line, and 4 CRC cell lines (HT-29, SW480, DLD-1, and LoVo) by quantitative methylation-specific polymerase chain reaction (QMSP) and real-time reverse transcription polymerase chain reaction (real time PCR), respectively. The effect of alcohol on the methylation status of ADHFE1 was analyzed in HT-29, SW480, DLD-1, and CCD18Co cells using QMSP, real-time PCR, immunoblot, and cell proliferation assay. RESULTS: ADHFE1 was hypermethylated in 69 of 73 CRC tissues (95%) compared to adjacent normal tissues (p < 0.05). The mRNA expression of ADHFE1 was significantly reduced in CRC compared to adjacent normal tissues (p < 0.05) and its expression was decreased in the alcohol consumption group (p < 0.05). ADHFE1 was hypermethylated and its expression was decreased in 4 CRC cell lines compared with normal colon cell line. Alcohol induced hypermethylation of ADHFE1, decreased its expression, and stimulated cell proliferation of HT-29, SW480, and DLD-1cells. CONCLUSION: These results demonstrate that the promoter hypermethylation of ADHFE1 is frequently present in CRC and alcohol induces methylation-mediated down expression of ADHFE1 and proliferation of CRC cells

    Proteomic and biochemical analyses reveal the activation of unfolded protein response, ERK-1/2 and ribosomal protein S6 signaling in experimental autoimmune myocarditis rat model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To investigate the molecular and cellular pathogenesis underlying myocarditis, we used an experimental autoimmune myocarditis (EAM)-induced heart failure rat model that represents T cell mediated postinflammatory heart disorders.</p> <p>Results</p> <p>By performing unbiased 2-dimensional electrophoresis of protein extracts from control rat heart tissues and EAM rat heart tissues, followed by nano-HPLC-ESI-QIT-MS, 67 proteins were identified from 71 spots that exhibited significantly altered expression levels. The majority of up-regulated proteins were confidently associated with unfolded protein responses (UPR), while the majority of down-regulated proteins were involved with the generation of precursor metabolites and energy metabolism in mitochondria. Although there was no difference in AKT signaling between EAM rat heart tissues and control rat heart tissues, the amounts and activities of extracellular signal-regulated kinase (ERK)-1/2 and ribosomal protein S6 (rpS6) were significantly increased. By comparing our data with the previously reported myocardial proteome of the Coxsackie viruses of group B (CVB)-mediated myocarditis model, we found that UPR-related proteins were commonly up-regulated in two murine myocarditis models. Even though only two out of 29 down-regulated proteins in EAM rat heart tissues were also dysregulated in CVB-infected rat heart tissues, other proteins known to be involved with the generation of precursor metabolites and energy metabolism in mitochondria were also dysregulated in CVB-mediated myocarditis rat heart tissues, suggesting that impairment of mitochondrial functions may be a common underlying mechanism of the two murine myocarditis models.</p> <p>Conclusions</p> <p>UPR, ERK-1/2 and S6RP signaling were activated in both EAM- and CVB-induced myocarditis murine models. Thus, the conserved components of signaling pathways in two murine models of acute myocarditis could be targets for developing new therapeutic drugs or methods aimed at treating enigmatic myocarditis.</p

    Dual Therapy with Cidofovir and Mirtazapine for Progressive Multifocal Leukoencephalopathy in a Sarcoidosis Patient

    Get PDF
    Background: Progressive multifocal leukoencephalopathy (PML) is a demyelinating central nervous system disease caused by JC virus (JCV) reactivation in immunocompromised patients. The disease course of PML is often progressive, fatal and at present, there are few reports on successful treatment outcomes. Case Report: A 45-year-old man with systemic sarcoidosis presented with rapidly progressive dementia and right hemiparesis. The patient was diagnosed with PML as confirmed via brain biopsy and JCV PCR. With a combination treatment of cidofovir and mirtazapine, there was significant improvement of neurological symptoms without measurable functional deficit. Conclusion: This case suggests that dual therapy with cidofovir and mirtazapine might be an effective treatment option in PML patients with sarcoidosis

    REX-1 Expression and p38 MAPK Activation Status Can Determine Proliferation/Differentiation Fates in Human Mesenchymal Stem Cells

    Get PDF
    BACKGROUND: REX1/ZFP42 is a well-known embryonic stem cell (ESC) marker. However, the role of REX1, itself, is relatively unknown because the function of REX1 has only been reported in the differentiation of ESCs via STAT signaling pathways. Human mesenchymal stem cells (hMSCs) isolated from young tissues and cancer cells express REX1. METHODOLOGY/PRINCIPAL FINDING: Human umbilical cord blood-derived MSCs (hUCB-MSCs) and adipose tissue-derived MSCs (hAD-MSCs) strongly express REX1 and have a lower activation status of p38 MAPK, but bone marrow-derived MSCs (hBM-MSCs) have weak REX1 expression and higher activation of p38 MAPK. These results indicated that REX1 expression in hMSCs was positively correlated with proliferation rates but inversely correlated with the phosphorylation of p38 MAPK. In hUCB-MSCs, the roles of REX1 and p38 MAPK were investigated, and a knockdown study was performed using a lentiviral vector-based small hairpin RNA (shRNA). After REX1 knockdown, decreased cell proliferation was observed. In REX1 knocked-down hUCB-MSCs, the osteogenic differentiation ability deteriorated, but the adipogenic potential increased or was similar to that observed in the controls. The phosphorylation of p38 MAPK in hUCB-MSCs significantly increased after REX1 knockdown. After p38 MAPK inhibitor treatment, the cell growth in REX1 knocked-down hUCB-MSCs almost recovered, and the suppressed expression levels of CDK2 and CCND1 were also restored. The expression of MKK3, an upstream regulator of p38 MAPK, significantly increased in REX1 knocked-down hUCB-MSCs. The direct binding of REX1 to the MKK3 gene was confirmed by a chromatin immunoprecipitation (ChIP) assay. CONCLUSIONS/SIGNIFICANCE: These findings showed that REX1 regulates the proliferation/differentiation of hMSCs through the suppression of p38 MAPK signaling via the direct suppression of MKK3. Therefore, p38 MAPK and REX-1 status can determine the cell fate of adult stem cells (ASCs). These results were the first to show the role of REX1 in the proliferation/differentiation of ASCs

    Encoder-decoder multimodal speaker change detection

    Full text link
    The task of speaker change detection (SCD), which detects points where speakers change in an input, is essential for several applications. Several studies solved the SCD task using audio inputs only and have shown limited performance. Recently, multimodal SCD (MMSCD) models, which utilise text modality in addition to audio, have shown improved performance. In this study, the proposed model are built upon two main proposals, a novel mechanism for modality fusion and the adoption of a encoder-decoder architecture. Different to previous MMSCD works that extract speaker embeddings from extremely short audio segments, aligned to a single word, we use a speaker embedding extracted from 1.5s. A transformer decoder layer further improves the performance of an encoder-only MMSCD model. The proposed model achieves state-of-the-art results among studies that report SCD performance and is also on par with recent work that combines SCD with automatic speech recognition via human transcription.Comment: 5 pages, accepted for presentation at INTERSPEECH 202
    corecore