8 research outputs found

    Novel modified endoscopic mucosal resection of large GI lesions (> 20 mm) using an external additional working channel (AWC) may improve R0 resection rate: initial clinical experience

    Get PDF
    Background En-bloc resection of large, flat dysplastic mucosal lesions of the luminal GI tract can be challenging. In order to improve the efficacy of resection for lesions ≥2 cm and to optimize R0 resection rates of lesions suspected of harboring high-grade dysplasia or early adenocarcinoma, a novel grasp and snare EMR technique utilizing a novel over the scope additional accessory channel, termed EMR Plus (EMR+), was developed. The aim of this pilot study is to describe the early safety and efficacy data from the first in human clinical cases. Methods A novel external over-the-scope additional working channel (AWC) (Ovesco, Tuebingen, Germany) was utilized for the EMR+ procedure, allowing a second endoscopic device to be used through the AWC while using otherwise standard endoscopic equipment. The EMR+ technique allows tissue retraction and a degree of triangulation during endoscopic resection. We performed EMR+ procedure in 6 patients between 02/2018–12/2018 for lesions in the upper and lower GI tract. Results The EMR+ technique utilizing the AWC was performed successfully in 6 resection procedures of the upper and/or lower GI tract in 6 patients in 2 endoscopy centers. All resections were performed successfully with the EMR+ technique, all achieving an R0 resection. No severe adverse events occurred in any of the procedures. Conclusions The EMR+ technique, utilizing an additional working channel, had an acceptable safety and efficacy profile in this preliminary study demonstrating it’s first use in humans. This technique may allow an additional option to providers to remove complex, large mucosal-based lesions in the GI tract using standard endoscopic equipment and a novel AWC device

    Multi-walled carbon nanotubes

    Full text link

    Paclobutrazol as a plant growth regulator

    Full text link
    corecore