24,029 research outputs found
Student Demographics with Changing Admission Criteria: Is Nursing Diversity at Risk?
Schools of nursing are challenged with choosing from an increasing number of applicants and the need to prepare as many successful nurses as possible to meet the nursing shortage. Strategies have included increasing student enrollment, utilizing accelerated programs, and changing admission criteria. This study describes the demographic characteristics of three classes of nursing students admitted under different criteria to the same nursing school. The value of maintaining a high level of ethnic diversity is guided by Leininger\u27s theory of cultural care diversity and universality. Although changes occurred in the demographic constitution of each nursing class, ethnic diversity was maintained as admission criteria were made more stringent
Bacterial chemotaxis without gradient-sensing
Models for chemotaxis are based on gradient sensing of individual organisms.
The key contribution of Keller and Segel is showing that erratic movements of
individuals may result in an accurate chemotaxis phenomenon as a group. In this
paper we provide another option to understand chemotactic behavior when
individuals do not sense the gradient of chemical concentration by any means.
We show that, if individuals increase their motility to find food when they are
hungry, an accurate chemotactic behavior may obtained without sensing the
gradient. Such a random dispersal has been suggested by Cho and Kim and is
called starvation driven diffusion. This model is surprisingly similar to the
original derivation of Keller-Segel model. A comprehensive picture of traveling
band and front solutions is provided with numerical simulations.Comment: 19 pages, 4 figure
Multimodal Speech Emotion Recognition Using Audio and Text
Speech emotion recognition is a challenging task, and extensive reliance has
been placed on models that use audio features in building well-performing
classifiers. In this paper, we propose a novel deep dual recurrent encoder
model that utilizes text data and audio signals simultaneously to obtain a
better understanding of speech data. As emotional dialogue is composed of sound
and spoken content, our model encodes the information from audio and text
sequences using dual recurrent neural networks (RNNs) and then combines the
information from these sources to predict the emotion class. This architecture
analyzes speech data from the signal level to the language level, and it thus
utilizes the information within the data more comprehensively than models that
focus on audio features. Extensive experiments are conducted to investigate the
efficacy and properties of the proposed model. Our proposed model outperforms
previous state-of-the-art methods in assigning data to one of four emotion
categories (i.e., angry, happy, sad and neutral) when the model is applied to
the IEMOCAP dataset, as reflected by accuracies ranging from 68.8% to 71.8%.Comment: 7 pages, Accepted as a conference paper at IEEE SLT 201
Comparative Studies of Detecting Abusive Language on Twitter
The context-dependent nature of online aggression makes annotating large
collections of data extremely difficult. Previously studied datasets in abusive
language detection have been insufficient in size to efficiently train deep
learning models. Recently, Hate and Abusive Speech on Twitter, a dataset much
greater in size and reliability, has been released. However, this dataset has
not been comprehensively studied to its potential. In this paper, we conduct
the first comparative study of various learning models on Hate and Abusive
Speech on Twitter, and discuss the possibility of using additional features and
context data for improvements. Experimental results show that bidirectional GRU
networks trained on word-level features, with Latent Topic Clustering modules,
is the most accurate model scoring 0.805 F1.Comment: ALW2: 2nd Workshop on Abusive Language Online to be held at EMNLP
2018 (Brussels, Belgium), October 31st, 201
TPA: Fast, Scalable, and Accurate Method for Approximate Random Walk with Restart on Billion Scale Graphs
Given a large graph, how can we determine similarity between nodes in a fast
and accurate way? Random walk with restart (RWR) is a popular measure for this
purpose and has been exploited in numerous data mining applications including
ranking, anomaly detection, link prediction, and community detection. However,
previous methods for computing exact RWR require prohibitive storage sizes and
computational costs, and alternative methods which avoid such costs by
computing approximate RWR have limited accuracy. In this paper, we propose TPA,
a fast, scalable, and highly accurate method for computing approximate RWR on
large graphs. TPA exploits two important properties in RWR: 1) nodes close to a
seed node are likely to be revisited in following steps due to block-wise
structure of many real-world graphs, and 2) RWR scores of nodes which reside
far from the seed node are proportional to their PageRank scores. Based on
these two properties, TPA divides approximate RWR problem into two subproblems
called neighbor approximation and stranger approximation. In the neighbor
approximation, TPA estimates RWR scores of nodes close to the seed based on
scores of few early steps from the seed. In the stranger approximation, TPA
estimates RWR scores for nodes far from the seed using their PageRank. The
stranger and neighbor approximations are conducted in the preprocessing phase
and the online phase, respectively. Through extensive experiments, we show that
TPA requires up to 3.5x less time with up to 40x less memory space than other
state-of-the-art methods for the preprocessing phase. In the online phase, TPA
computes approximate RWR up to 30x faster than existing methods while
maintaining high accuracy.Comment: 12pages, 10 figure
Learning to Rank Question-Answer Pairs using Hierarchical Recurrent Encoder with Latent Topic Clustering
In this paper, we propose a novel end-to-end neural architecture for ranking
candidate answers, that adapts a hierarchical recurrent neural network and a
latent topic clustering module. With our proposed model, a text is encoded to a
vector representation from an word-level to a chunk-level to effectively
capture the entire meaning. In particular, by adapting the hierarchical
structure, our model shows very small performance degradations in longer text
comprehension while other state-of-the-art recurrent neural network models
suffer from it. Additionally, the latent topic clustering module extracts
semantic information from target samples. This clustering module is useful for
any text related tasks by allowing each data sample to find its nearest topic
cluster, thus helping the neural network model analyze the entire data. We
evaluate our models on the Ubuntu Dialogue Corpus and consumer electronic
domain question answering dataset, which is related to Samsung products. The
proposed model shows state-of-the-art results for ranking question-answer
pairs.Comment: 10 pages, Accepted as a conference paper at NAACL 201
- …