110 research outputs found

    Quantitative measurements of C-reactive protein using silicon nanowire arrays

    Get PDF
    A silicon nanowire-based sensor for biological application showed highly desirable electrical responses to either pH changes or receptor-ligand interactions such as protein disease markers, viruses, and DNA hybridization. Furthermore, because the silicon nanowire can display results in real-time, it may possess superior characteristics for biosensing than those demonstrated in previously studied methods. However, despite its promising potential and advantages, certain process-related limitations of the device, due to its size and material characteristics, need to be addressed. In this article, we suggest possible solutions. We fabricated silicon nanowire using a top-down and low cost micromachining method, and evaluate the sensing of molecules after transfer and surface modifications. Our newly designed method can be used to attach highly ordered nanowires to various substrates, to form a nanowire array device, which needs to follow a series of repetitive steps in conventional fabrication technology based on a vapor-liquid-solid (VLS) method. For evaluation, we demonstrated that our newly fabricated silicon nanowire arrays could detect pH changes as well as streptavidin-biotin binding events. As well as the initial proof-of-principle studies, C-reactive protein binding was measured: electrical signals were changed in a linear fashion with the concentration (1 fM to 1 nM) in PBS containing 1.37 mM of salts. Finally, to address the effects of Debye length, silicon nanowires coupled with antigen proteins underwent electrical signal changes as the salt concentration changed

    Fabrication of Metal Nanobridge Arrays using Sacrificial Silicon Nanowire

    Get PDF
    Abstract -Novel fabrication method of nanobridge array of various materials was proposed using suspended silicon nanowire array as a sacrificial template structure. Nanobridges of various materials can be simply fabricated by direct deposition with thermal evaporation on the top of prefabricated suspended silicon nanobridge arrays, which are used as a sacrificial structure. Since silicon nanowire can be easily removed by selective dry etching, nanobridge arrays of an intended material are finally obtained. In this paper, metal nanobridges of Ti/Au, around 50-200 nm in thickness and width, 5-20 μm in length were fabricated to prove the advantages of the proposed nanowire or nanobridge fabrication method. The nanobridges of Ti/Au after complete removal of sacrificial silicon nanowire template were well-established and bending of nanobridge caused by the tensile stress was observed after silicon removing. Up to 50 nm and 10 μm of silicon nanowire in diameter and length respectively was also very useful for nanowire templates

    Could Fractional Exhaled Nitric Oxide Test be Useful in Predicting Inhaled Corticosteroid Responsiveness in Chronic Cough? A Systematic Review

    Get PDF
    © 2016 Background Fractional exhaled nitric oxide (FENO) is a safe and convenient test for assessing T H 2 airway inflammation, which is potentially useful in the management of patients with chronic cough. Objective To summarize the current evidence on the diagnostic usefulness of FENO for predicting inhaled corticosteroid (ICS) responsiveness in patients with chronic cough. Methods A systematic literature review was conducted to identify articles published in peer-reviewed journals up to February 2015, without language restriction. We included studies that reported the usefulness of FENO (index test) for predicting ICS responsiveness (reference standard) in patients with chronic cough (target condition). The data were extracted to construct a 2 × 2 accuracy table. Study quality was assessed with Quality Assessment of Diagnostic Accuracy Studies 2. Results We identified 5 original studies (2 prospective and 3 retrospective studies). We identified considerable heterogeneities in study design and outcome definitions, and thus were unable to perform a meta-analysis. The proportion of ICS responders ranged from 44% to 59%. Sensitivity and specificity ranged from 53% to 90%, and from 63% to 97%, respectively. The reported area under the curve ranged from abou t 0.60 to 0.87; however, studies with a prospective design and a lower prevalence of asthma had lower area under the curve values. None measured placebo effects or objective cough frequency. Conclusions We did not find strong evidence to support the use of FENO tests for predicting ICS responsiveness in chronic cough. Further studies need to have a randomized, placebo-controlled design, and should use validated measurement tools for cough. Standardization would facilitate the development of clinical evidence

    Sulforaphane Increases Cyclin-Dependent Kinase Inhibitor, p21 Protein in Human Oral Carcinoma Cells and Nude Mouse Animal Model to Induce G2/M Cell Cycle Arrest

    Get PDF
    Previously, our group reported that sulforaphane (SFN), a naturally occurring chemopreventive agent from cruciferous vegetables, effectively inhibits the proliferation of KB and YD-10B human oral squamous carcinoma cells by causing apoptosis. In this study, treatment of 20 and 40 µM of SFN for 12 h caused a cell cycle arrest in the G2/M phase. Cell cycle arrest induced by SFN was associated with a significant increase in the p21 protein level and a decrease in cyclin B expression, but there was no change in the cyclin A protein level. In addition, SFN increased the p21 promoter activity significantly. Furthermore, SFN induced p21 protein expression in a nude mouse xenograft model suggesting that SFN is a potent inducer of the p21 protein in human oral squamous carcinoma cells. These findings show that SFN is a promising candidate for molecular-targeting chemotherapy against human oral squamous cell carcinoma

    Assessment of Esophageal Reconstruction via Bioreactor Cultivation of a Synthetic Scaffold in a Canine Model

    Get PDF
    Objectives Using tissue-engineered materials for esophageal reconstruction is a technically challenging task in animals that requires bioreactor training to enhance cellular reactivity. There have been many attempts at esophageal tissue engineering, but the success rate has been limited due to difficulty in initial epithelialization in the special environment of peristalsis. The purpose of this study was to evaluate the potential of an artificial esophagus that can enhance the regeneration of esophageal mucosa and muscle through the optimal combination of a double-layered polymeric scaffold and a custom-designed mesenchymal stem cell-based bioreactor system in a canine model. Methods We fabricated a novel double-layered scaffold as a tissue-engineered esophagus using an electrospinning technique. Prior to transplantation, human-derived mesenchymal stem cells were seeded into the lumen of the scaffold, and bioreactor cultivation was performed to enhance cellular reactivity. After 3 days of cultivation using the bioreactor system, tissue-engineered artificial esophagus was transplanted into a partial esophageal defect (5×3 cm-long resection) in a canine model. Results Scanning electron microscopy (SEM) showed that the electrospun fibers in a tubular scaffold were randomly and circumferentially located toward the inner and outer surfaces. Complete recovery of the esophageal mucosa was confirmed by endoscopic analysis and SEM. Esophagogastroduodenoscopy and computed tomography also showed that there were no signs of leakage or stricture and that there was a normal lumen with complete epithelialization. Significant regeneration of the mucosal layer was observed by keratin-5 immunostaining. Alpha-smooth muscle actin immunostaining showed significantly greater esophageal muscle regeneration at 12 months than at 6 months. Conclusion Custom-designed bioreactor cultured electrospun polyurethane scaffolds can be a promising approach for esophageal tissue engineering

    Bioanalysis of alpelisib using liquid chromatography–tandem mass spectrometry and application to pharmacokinetic study

    Get PDF
    Abstract Alpelisib is the first alpha-specific phosphatidylinositol-3-kinase (PI3K) inhibitor indicated for the treatment of hormone receptor-positive, human epidermal growth factor receptor 2-negative, PI3K catalytic subunit alpha-mutated, advanced, or metastatic breast cancer. Substantial attempts have been made to extend its clinical use to other types of cancer. Analytical methods proven to accurately quantify alpelisib would improve the reliability of the preclinical and clinical data of alpelisib. Therefore, we developed and validated a quantification method based on liquid chromatography–tandem mass spectrometry for alpelisib in mouse and human plasma samples. Alpelisib and an internal standard (IS; enzalutamide) were separated from endogenous substances using an XTerra MS C18 column with a linear gradient of 0.1% formic acid in water and 0.1% formic acid in acetonitrile. Multiple reaction monitoring transitions for alpelisib and the IS were m/z 442.1 > 328.0 and m/z 465.0 > 209.1, respectively. The calibration curve for alpelisib was confirmed to be linear in the range of 1–2000ng/mL in both mouse and human plasma. The intra- and inter-day accuracy and precision met the acceptance criteria, and no significant matrix effects were observed. Alpelisib was stable under various storage and handling conditions, and the carryover effect was overcome using the injection loop flushing method. We successfully used this assay to study the in vitro metabolic profiles and in vivo pharmacokinetics of alpelisib in mice. Here, to the best of our knowledge, we report for the first time a valid quantitative method for alpelisib in mouse and human plasma, which could aid in providing valuable pharmacokinetic information on alpelisib to increase its clinical availability

    Preoperative RAS Mutational Analysis Is of Great Value in Predicting Follicular Variant of Papillary Thyroid Carcinoma

    Get PDF
    Follicular variant of papillary thyroid carcinoma (FVPTC), particularly the encapsulated subtype, often causes a diagnostic dilemma. We reconfirmed the molecular profiles in a large number of FVPTCs and investigated the efficacy of the preoperative mutational analysis in indeterminate thyroid nodules. BRAF V600E/K601E and RAS mutational analysis was performed on 187 FVPTCs. Of these, 132 (70.6%) had a point mutation in one of the BRAF V600E ( = 57), BRAF K601E ( = 11), or RAS ( = 64) genes. All mutations were mutually exclusive. The most common RAS mutations were at NRAS codon 61. FNA aspirates from 564 indeterminate nodules were prospectively tested for BRAF and RAS mutation and the surgical outcome was correlated with the mutational status. Fifty-seven and 47 cases were positive for BRAF and RAS mutation, respectively. Twenty-seven RAS-positive patients underwent surgery and all except one patient had FVPTC. The PPV and accuracy of RAS mutational analysis for predicting FVPTC were 96% and 84%, respectively. BRAF or RAS mutations were present in more than two-thirds of FVPTCs and these were mutually exclusive. BRAF mutational analysis followed by N, H, and KRAS codon 61 mutational analysis in indeterminate thyroid nodules would streamline the management of patients with malignancies, mostly FVPTC

    LY294002 may overcome 5-FU resistance via down-regulation of activated p-AKT in Epstein-Barr virus-positive gastric cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As EBV-associated gastric cancer has unique features that are different from EBV (-) gastric cancer, EBV is considered to have a key role in gastric carcinogenesis. It has been reported that viral latent membrane protein 2A (LMP2A) in EBV-transformed tumor cells activates the phosphatidylinositol 3-kinase (PI3K)/AKT pathway, which provides a survival signal and chemo-resistance to cytotoxic anti-cancer drugs. This study was to evaluate anti-proliferative effect and cell cycle change when 5-FU and LY294002 (LY), a selective inhibitor of PI3K, were treated separately or combined with different schedules in EBV positive gastric cancer cell line, SNU-719.</p> <p>Methods</p> <p>After single treatment and sequential combination of 5-FU and LY, cytotoxic activity was measured by MTS assay. When 5-FU and LY were treated in single and sequential combinations, the expression of p-AKT, p-NFkB, p-p53 and bcl-2 was observed on different concentrations by Western blot analysis. We also investigated the effect on apoptosis and cell cycle distribution using flow cytometry. The LMP2A siRNA inhibition was done to confirm the reversal of decreased 5-FU activity and p-AKT.</p> <p>Results</p> <p>When 5-FU was sequentially combined with LY, the combination index (CI) value indicated synergistic anti-proliferative effect. The expression of p-AKT and p-NFκB was upregulated by 5-FU alone but sequential treatment of 5-FU and LY decreased the expression of both p-AKT and p-NFκB. When 5-FU was combined with LY, G0/G1 and sub G1 cell population (%) increased. When 5-FU was added to the cells transfected with LMP2A siRNA, its anti-proliferative effect increased and the expression of p-AKT decreased. In sequential combination of 5-FU and LY, the expression of p-p53 was increased and bcl-2 expression was diminished compared to 5-FU alone.</p> <p>Conclusion</p> <p>These data suggest that sequential combination of 5-FU and LY induce synergistic cytotoxicity and overcome intrinsic and acquired resistance of 5-FU via downregulation of activated p-AKT and mitochondria-dependent apoptosis in EBV gastric cancer cell line, SNU-719.</p
    corecore